Skip to main content
Log in

Effect of vacuum venting and mold wettability on the replication of micro-structured surfaces

  • Technical Paper
  • Published:
Microsystem Technologies Aims and scope Submit manuscript

Abstract

Micro injection molding enables the manufacture of micro-scale features with good accuracy at high production rates. However, the replication of complex micro and nano features is still challenging hindering the development of new functional surface topographies. The marked thermal gradient between injected polymer and mold surface and the reduced dimensions promote a rapid drop of melt temperature that causes the incomplete filling of the micro features. This study aims to investigate the combined effects of vacuum venting and mold wettability on the replication of micro-structured surfaces. A low-viscosity polystyrene and a cyclic olefin copolymer were selected and their wetting properties were evaluated. The results showed that a polymer with high wetting properties and an elevated viscosity dependence on temperature improves the replication of the micro features. Moreover, high interfacial effects can be exploited to significantly enhance the filling ratio when applying vacuum venting.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  • Attia UM, Marson S, Alcock JR (2009) Micro-injection moulding of polymer microfluidic devices. Microfluid Nanofluid 7(1):1

    Article  Google Scholar 

  • Berger GR, Steffel C, Friesenbichler W (2016) A study on the role of wetting parameters on friction in injection moulding. Int J Mater Product Technol 52(1–2):193

    Article  Google Scholar 

  • Chien RD (2006) Micromolding of biochip devices designed with microchannels. Sens Actuators A Physi 128(2):238

    Article  Google Scholar 

  • Gava A, Lucchetta G (2012) On the performance of a viscoelastic constitutive model for micro injection moulding simulations. Express Polym Lett 6(5):417

    Article  Google Scholar 

  • Geoghegan M, Krausch G (2003) Wetting at polymer surfaces and interfaces. Prog Polym Sci 28(2):261

    Article  Google Scholar 

  • Gornik C (2004) Injection moulding of parts with microstructured surfaces for medical applications. Macromol Symp 217(1):365

    Article  Google Scholar 

  • Griffiths C, Tosello G, Dimov SS, Scholz S (2010) Cavity air flow behavior during filling in microinjection molding. J Manuf Sci Eng 133(1):1

    Google Scholar 

  • Huang-Ya L, Wen-Bin Y (2009) Analysis of the filling capability to the microstructures in micro-injection molding. Appl Math Model 33(9):3746

    Article  Google Scholar 

  • ISO6721-1 (2011) Determination of dynamic mechanical properties—Part11: glass transition temperature

  • Lee N, Kim YK, Kang S (2004) Temperature dependence of anti-adhesion between a stamper with sub-micron patterns and the polymer in nano-moulding processes. J Phys D Appl Phys 37(12):1624

    Article  Google Scholar 

  • Lee N, Moon SD, Kang S, Ahn S (2003) The effect of wettability of nickel mold insert on the surface quality of molded microlenses. Opt Rev 10(4):290

    Article  Google Scholar 

  • Lucchetta G, Masato D, Sorgato M, Crema L, Savio E (2016) Effects of different mould coatings on polymer filling flow in thin-wall injection moulding. CIRP Annals Manuf Technol 65(1)

  • Lucchetta G, Ferraris E, Tristo G, Reynaerts D (2012) Influence of mould thermal properties on the replication of micro parts via injection moulding. Procedia CIRP 2(1):113

    Article  Google Scholar 

  • Lucchetta G, Sorgato M, Zanchetta E, Brusatin G, Guidi E, Di Liddo R, Conconi M (2015) Effect of injection molded micro-structured polystyrene surfaces on proliferation of mc3t3-e1 cells. Express Polym Lett 9(4):354

    Article  Google Scholar 

  • Lucchetta G, Sorgato M, Carmignato S, Savio E (2014) Investigating the technological limits of micro-injection molding in replicating high aspect ratio micro-structured surfaces. CIRP Annals Manuf Technol 63(1):521

    Article  Google Scholar 

  • Masato D, Sorgato M, Lucchetta G (2016) Analysis of the influence of part thickness on the replication of micro-structured surfaces by injection molding. Mater Design 95:219

    Article  Google Scholar 

  • Matschuk M, Larsen NB (2013) Injection molding of high aspect ratio sub-100 nm nanostructures. J Micromech Microeng 23(2):025003

    Article  Google Scholar 

  • Mosaddegh P, Angstadt DC (2008) Micron and sub-micron feature replication of amorphous polymers at elevated mold temperature without externally applied pressure. J Micromech Microeng 8(3):035036

    Article  Google Scholar 

  • Pranov H, Rasmussen HK, Larsen NB, Gadegaard N (2006) On the injection molding of nanostructured polymer surfaces. Polym Eng Sci 46(2):160

    Article  Google Scholar 

  • Rytka C, Kristiansen P, Neyer A (2015) Iso-and variothermal injection compression moulding of polymer micro-and nanostructures for optical and medical applications. J Micromech Microeng 25(6):065008

    Article  Google Scholar 

  • Rytka C, Opara N, Andersen NK, Kristiansen PM, Neyer A (2016) On the role of wetting, structure width, and flow characteristics in polymer replication on micro-and nanoscale. Macromol Mater Eng 301(5):597

    Article  Google Scholar 

  • Sha B, Dimov S, Griffiths C, Packianather M (2007) Investigation of micro-injection moulding: Factors affecting the replication quality. J Mater Process Tech 183(23):284

    Article  Google Scholar 

  • Sha B, Dimov S, Griffiths C, Packianather M (2007) Micro-injection moulding: Factors affecting the achievable aspect ratios. Int J Adv Manuf Technol 33(1–2):147

    Article  Google Scholar 

  • Shen YK, Chang CY, Shen YS, Hsu SC, Wu MW (2008) Analysis for microstructure of microlens arrays on micro-injection molding by numerical simulation. Int Commun Heat Mass Transf 35(6):723

    Article  Google Scholar 

  • Sorgato M, Babenko M, Lucchetta G, Whiteside B (2016) Investigation of the influence of vacuum venting on mould surface temperature in micro injection moulding. Int J Adv Manuf Technol pp 1–9

  • Srirojpinyo C, Yoon SH, Lee J, Mead J, Barry C (2005) Interfacial effects in replication of nano-scale features. Annu Tech Conf ANTEC. Conference Proceedings 2:323

    Google Scholar 

  • Suzuki H, Takayama T, Ito H (2012) Replication behavior for micro surface features with high aspect ratio and structure development in injection compression molding. Int J Modern Phys Conf Ser 06:563

    Article  Google Scholar 

  • Tosello G, Gava A, Hansen H, Lucchetta G (2007) Influence of process parameters on the weld lines of a micro injection molded component. Proceedings of the Society of Plastics Engineers Annual Technical Conference ANTEC, (Cincinnati, OH, 6-11 May 2007): pp 2002–2006

  • Turi E (2012) Thermal characterization of polymeric materials, Elsevier

  • Xu G, Yu L, Lee LJ, Koelling KW (2005) Experimental and numerical studies of injection molding with microfeatures. Polym Eng Sci 45(6):866

    Article  Google Scholar 

  • Yao D, Kim B (2004) Scaling issues in miniaturization of injection molded parts. J Manuf Sci Eng 126(4):733

    Article  Google Scholar 

  • Yao D, Kim B (2002) Development of rapid heating and cooling systems for injection molding applications. Polym Eng Sci 42(12):2471

    Article  Google Scholar 

  • Yokoi H, Han X, Takahashi T, Kim W (2006) Effects of molding conditions on transcription molding of microscale prism patterns using ultra-high-speed injection molding. Polym Eng Sci 46(9):1140

    Article  Google Scholar 

  • Yoon SH, Padmanabha P, Cha NG, Mead J, Barry C (2011) Evaluation of vacuum venting for micro-injection molding. Int Polym Process 26:346

  • Yu L, Koh CG, Lee LJ, Koelling KW, Madou MJ (2002) Experimental investigation and numerical simulation of injection molding with micro-features. Polym Eng Sci 42(5):871

    Article  Google Scholar 

  • Zhang N, Chu J, Byrne CJ, Browne D, Gilchrist M (2012) Replication of micro/nano-scale features by micro injection molding with a bulk metallic glass mold insert. J Micromech Microeng 22(6):065019

    Article  Google Scholar 

  • Zitzenbacher G, Huang Z, Längauer M, Forsich C, Holzer C (2016) Wetting behavior of polymer melts on coated and uncoated tool steel surfaces. J Appl Polym Sci 133(21)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marco Sorgato.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sorgato, M., Masato, D. & Lucchetta, G. Effect of vacuum venting and mold wettability on the replication of micro-structured surfaces. Microsyst Technol 23, 2543–2552 (2017). https://doi.org/10.1007/s00542-016-3038-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00542-016-3038-5

Keywords

Navigation