Skip to main content

Advertisement

Log in

Soft-sediment deformation of Late Pleistocene sediments along the southwestern coast of the Baltic Sea (NE Germany)

  • Original Paper
  • Published:
International Journal of Earth Sciences Aims and scope Submit manuscript

Abstract

A 1,460-m-long profile of a Late Glacial subglacial, glacio-fluvial, glacio-limnic and glacio-deltaic sequence exposed at a cliff section on Usedom Island (SW Baltic Sea coast) is described. The sequence is up to 31 m thick and shows sedimentary structures typical of a glacial setting. Soft-sediment deformation is encountered and is associated with changes in lithology. These deformations include liquefaction, slumping, and faulting. As the most plausible cause, earthquake-induced shaking is discussed. The associated neotectonic activity is seen as a consequence of the postglacial isostatic crustal rebound. As the deglaciation earthquake ratio diminishes with time and as the rebound is phasing out, no large earthquakes are anticipated for northern Germany, although in conclusion the lithosphere of the North German Basin has to be regarded as weakened by repeated ice loading and deloading.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  • Adams J (1989) Postglacial faulting in eastern Canada: nature, origin and seismic hazard implications. Tectonophys 163:323–331

    Article  Google Scholar 

  • Arvidsson R (1996) Fennoscandian earthquakes: whole crustal rupturing related to postglacial rebound. Sci 274:744–746

    Article  Google Scholar 

  • Audemard FA, de Santis F (1991) Survey of liquefaction structures induced by recent moderate earthquakes. Bull Int Assoc Eng Geol 44:5–16

    Article  Google Scholar 

  • Baldschuhn R, Best G, Deneke E, Frisch U, Jürgens U, Kockel F, Schmitz J, Sattler-Kosinowski S, Stancu-Kristoff G, Zirngast M (1996) Geotektonischer Atlas von NW-Deutschland (Geotectonic Atlas of NW-Germany). 1:300000, BGR, 17 maps, 140 cross sections, Hannover

  • Barnhardt WA, Kayen RE (2000) Radar structure of earthquake-induced, coastal landslides in Anchorage, Alaska. Environ Geosci 7:38–45

    Article  Google Scholar 

  • Bayer U, Scheck M, Rabbel W, Krawczyk CM, Götze H-J, Stiller M, Beilecke T, Marotta AM, Barrio-Alvers L, Kuder J (1999) An integrated study of the NE-German Basin. Tectonophys 314:285–307

    Article  Google Scholar 

  • Behre KE (2007) A new Holocene sea-level curve for the southern North Sea. Boreas 36:82–102

    Google Scholar 

  • Beres M, Green AG, Pugin A (2000) Diapiric origin of the Chessel-Noville Hills of the Rhone Valley interpreted from georadar mapping. Environ Eng Geosci 6:141–153

    Google Scholar 

  • Björck S (1995) A review of the history of the Baltic Sea, 13.0–8.0 ka BP. Quat Int 27:19–40

    Article  Google Scholar 

  • Bjorlykke K, Hoeg K, Faleide JI, Jahren J (2005) When do faults in sedimentary basins leak? Stress and deformation in sedimentary basins; examples from the North Sea and Haltenbanken, offshore Norway. AAPG Bull 89:1019–1031

    Article  Google Scholar 

  • Braun A, Kuo CY, Shum CK, Wu P, van der Wal W, Fotopoulos G (2008) Glacial isostatic adjustment at the Laurentide ice sheet margin: models and observations in the Great Lakes region. J Geodyn 46:165–173

    Article  Google Scholar 

  • Brinkmann R (1953) Über die diluvialen Störungen auf Rügen. Geol Rundsch 41:231–241

    Article  Google Scholar 

  • Castilla RA, Audemard FA (2007) Sand blows as a potential tool for magnitude estimation of pre-instrumental earthquakes. J Seismol. doi:10.1007/s10950-007-9065-z

  • Chunga K, Livio F, Michetti AM, Serva L (2007) Synsedimentary deformation of Pleistocene glaciolacustrine deposits in the Albese con Cassano Area (Southern Alps, Northern Italy), and possible implications for paleoseismicity. Sediment Geol 196:59–80

    Article  Google Scholar 

  • Cloetingh S, Ziegler PA, Beekman F, Andriessen PAM, Matenco L, Bada G, Garcia-Castellanos D, Hardebol N, Dezes P, Sokoutis D (2005) Lithospheric memory, state of stress and rheology: neotectonic controls on Europe’s intraplate continental topography. Quat Sci Rev 24:241–304

    Article  Google Scholar 

  • Dietrich R, Liebsch G (2000) Zur Variabilität des Meeresspiegels an der Küste von Mecklenburg-Vorpommern. Z Geol Wiss 28:615–623

    Google Scholar 

  • Doyle BC, Rogers JD (2005) Seismically induced lateral spread features in the western New Madrid seismic zone. Environ Eng Geosci 11:251–258

    Article  Google Scholar 

  • Ehlers J (1990) Reconstructing the dynamics of the north–west European Pleistocene ice sheets. Quat Sci Rev 9:71–83

    Article  Google Scholar 

  • Ekman M, Mäkinen J (1996) Recent postglacial rebound, gravity change and mantle flow in Fennoscandia. Geophys J Int 126:229–234

    Article  Google Scholar 

  • Ellenberg J (1992) Recent fault tectonics and their relationship to the seismicity of East Germany. Tectonophys 202:117–121

    Article  Google Scholar 

  • Florek W (1996) Late Vistulian and Holocene development of the Northern Pomeranian river valleys and the influence of Southern Baltic Neotectonics. Z Geomorph NF SupplBd 102:169–183

    Google Scholar 

  • Frischbutter A, Schwab G (1995) Karte der rezenten vertikalen Krustenbewegungen in der Umrahmung der Ostsee-Depression. Ein Beitrag zu IGCP-Projekt Nr.346 “Neogeodynamica Baltica”. Brandenburgische Geowissenschaftliche Beiträge 2:59–67

    Google Scholar 

  • Garetsky R, Aizberg RY, Karabanov AK, Kockel F, Ludwig AO, Lykke-Anderson H, Ost-Ficzuk S, Palienko VP, Sim LS, Šliaupa A, Stackebrandt W (2001) The neogeodynamic state of the Baltic Sea depression and adjacent areas—some conclusions from the IGCP-Project 346: “Neogeodynamica Baltica”. Brandenburgische Geowissenschaftliche Beiträge 8:43–47

    Google Scholar 

  • Gehrels WR, Milne GA, Kirby JR, Patterson RT, Belknap DF (2004) Late Holocene sea-level changes and isostatic crustal movements in Atlantic Canada. Quat Int 120:79–89

    Article  Google Scholar 

  • Görsdorf J, Kaiser K (2001) Radiokohlenstoffdaten aus dem Spätpleistozän und Frühholozän von Mecklenburg-Vorpommern. Meyniana 53:91–118

    Google Scholar 

  • Hansen E, Porter SC, Hall B, Hills A (1961) Decollement structures in glacial lake sediments. Geol Soc Am Bull 72:1415–1418

    Article  Google Scholar 

  • Hennig D (1906) Erdbebenkunde. Johann Ambrosius Barth, Leipzig

    Google Scholar 

  • Hetzel R, Hampel A (2005) Slip rate variations on normal faults during glacial-interglacial changes in surface loads. Nat 435:81–84

    Article  Google Scholar 

  • Hoffmann G, Lampe R, Barnasch J (2005) Postglacial evolution of coastal barriers along the West Pomeranian coast, NE Germany. Quat Int 133–134:47–59

    Article  Google Scholar 

  • Houmark-Nielsen M, Kjær KH (2003) Southwest Scandinavia, 40–15 kyr BP: palaeogeography and environmental change. J Quat Sci 18:769–786

    Article  Google Scholar 

  • Houmark-Nielsen M, Björck S, Wolfarth B (2006) Cosmogenic 10Be ages on the Pomeranian Moraine, Poland’: comments. Boreas 35:600–604

    Article  Google Scholar 

  • Hunter LE, Powell RD, Smith GW (1996) Facies architecture and grounding-line fan processes of morainal banks during the deglaciation of coastal Maine. Geol So Am Bull 108:1022–1038

    Article  Google Scholar 

  • Jaekel O (1910) Über ein diluviales Bruchsystem in Norddeutschland. Z deut geol Gesell 11:605–615

    Google Scholar 

  • Johnston AC (1987) Suppression of earthquakes by large continental ice sheets. Nat 330:467–469

    Article  Google Scholar 

  • Jolly RJH, Lonergan L (2002) Mechanism on the formation of sand intrusions. J Geol Soc (London, UK) 159:605–617

    Article  Google Scholar 

  • Katzung G (2004) Geologie von Mecklenburg-Vorpommern. E. Schweizerbart’sche Verlagsbuchhandlung, Stuttgart, p p 590

    Google Scholar 

  • Kaufmann G (2000) Ice-ocean mass balance during the Late Pleistocene glacial cycles in view of CHAMP and GRACE satellite missions. Geophys J Int 143:142–156

    Article  Google Scholar 

  • Kaufmann G, Wu P, Li G (2000) Glacial isostatic adjustment in Fennoscandia for a laterally heterogeneous earth. Geophys J Int 143:262–273

    Article  Google Scholar 

  • Kliewe H (1979) The German Democratic Republic. In: Gudelis V, Königsson LK (eds) The Quaternary history of the Baltic. Acta Universitatis Upsaliensis. Symposia Uni-versitatis Upsaliensis, Annum Quingentesimum Celebratis, vol 1. pp 185–193

  • Kolp O (1981) Die Bedeutung der isostatischen Kippbewegung für die Entwicklung der südlichen Ostseeküste. Z Geol Wiss 9:7–22

    Google Scholar 

  • Kramarska R (1998) Origin and development of the Odra Bank in the light of the geologic structure and radiocarbon dating. Geol Quart 42:277–288

    Google Scholar 

  • Kurzawa M (2003) The sedimentary record and rates of Quaternary vertical tectonic movements in NW Poland. Quat Int 101–102:137–148

    Article  Google Scholar 

  • Lagerlund E, Malmberg-Persson K, Krzyszkowski D, Johansson P, Dobracka E, Dobracki R, Panzig WA (1995) Unexpected ice flow directions during the Late Weichselian deglaciation of the South Baltic area indicated by a new lithostratigraphy in NW Poland and NE Germany. Quat Int 28:127–144

    Article  Google Scholar 

  • Lambeck K, Johnston P, Nakada M (1990) Holocene glacial rebound and sea level changes in NW Europe. Geophys J Int 115:960–990

    Article  Google Scholar 

  • Lampe R (2005) Lateglacial and Holocene water-level variations along the NE German Baltic Sea coast: review and new results. Quat Int 133–134:121–136

    Article  Google Scholar 

  • Lehné R, Sirocko F (2005) Quantification of recent movement potentials in Schleswig-Holstein (Germany) by GIS-based calculation of correlation coefficients. Int J Earth Sci 94:1094

    Article  Google Scholar 

  • Leydecker G (1986) Erdbebenkatalog für die Bundesrepublik Deutschland mit Randgebieten für die Jahre 1000–1981. Geol Jahrb 36:3–83

    Google Scholar 

  • Leydecker G, Kopera JR, Rudloff A (1999) Abschätzung der Erdbebengefährdung in Gebieten geringer Seismizität am Beispiel eines Standortes in Norddeutschland. In: Savidis SA (ed) Entwicklungsstand in Forschung und Praxis auf den Gebieten des Erdbebeningenieurwesens, der Boden- und Baudynamik, vol 10. DGEB—Publikation, pp 89–97

  • Lowe DR (1975) Water escape structures in coarse-grained sediments. Sediment 22:157–204

    Article  Google Scholar 

  • Marks L (2002) Last glacial maximum in Poland. Quat Sci Rev 21:103–110

    Article  Google Scholar 

  • McCann T (1999) The tectonosedimentary evolution of the northern margin of the Carboniferous foreland basin of NE Germany. Tectonophys 313:119–144

    Article  Google Scholar 

  • Meyer M, Harff J, Gogina M, Barthel A (2008) Coastline changes of the Darss-Zingst Peninsula–A modelling approach. J Mar Sys 74:147–154

    Article  Google Scholar 

  • Mörner NA (1973) Eustatic changes during the last 300 years. Palaeogeogr Palaeoclimatol Palaeoecol 13:1–14

    Article  Google Scholar 

  • Mörner NA (1979) The Fennoscandian uplift and Late Cenozoic geodynamics: geological evidence. GeoJ 3:287–318

    Google Scholar 

  • Mörner NA (1990) Glacial isostasy and long-term crustal movements in Fennoscandia with respect to lithospheric and asthenospheric processes and properties. Tectonophys 176:13–24

    Article  Google Scholar 

  • Mörner NA (1991) Intense earthquakes and seismotectonics as a function of glacial isostasy. Tectonophys 188:407–410

    Article  Google Scholar 

  • Mörner NA (1996) Liquefaction and varve disturbance as evidence of paleoseismic events and tsunamis; the autumn 10, 430 BP event in Sweden. Quat Sci Rev 15:939–948

    Article  Google Scholar 

  • Mörner NA (ed) (2003) Paleoseismicity of Sweden—a novel paradigm. University of Stockholm, Sweden, pp 320. ISBN 91-631-4072-1

  • Mörner NA (2004) Active faults and paleoseismicity in Fennoscandia, especially Sweden. Primary structures and secondary effects. Tectonophys 380:139–157

    Article  Google Scholar 

  • Muir-Wood R (2000) Deglaciation Seismotectonics: a principal influence on intraplate seismogenesis at high latitudes? Quat Sci Rev 19:1399–1411

    Article  Google Scholar 

  • Müller U, Rühberg N, Krienke HD (1995) The pleistocene sequence in Mecklenburg-Vorpommern. In: Ehlers JK, Gibbard PS (eds) Glacial deposits in North–East Europe. Balkema, Rotterdam, pp 501–516

    Google Scholar 

  • NIA–Netherlands Institute of Applied Geoscience TNO (2000) Northwestern European gas Atlas. Published on CD-Rom, Utrecht

  • Nocquet JM, Calais E, Parsons B (2005) Geodetic constraints on glacial isostatic adjustment in Europe. Geophys Res Lett 32(L06308). doi:10.1029/2004GL022174

  • Obermeier SF (1996) Use of liquefaction-induced features for seismic analysis—an overview of how seismic liquefaction features can be distinguished from other features and how their regional distribution and properties of source sediment can be used to infer the location and strength of Holocene paleo-earthquakes. Eng Geol 44:1–76

    Article  Google Scholar 

  • Ohsumi T, Ogawa Y (2008) Vein structures, like ripple marks, are formed by short-wavelength shear waves. J Struc Geol 30:719–724

    Article  Google Scholar 

  • Piotrowski JA, Tulaczyk S (1999) Subglacial conditions under the last ice sheet in northwest Germany: ice-bed separation and enhanced basal sliding Germany? Quat Sci Rev 18:737–751

    Article  Google Scholar 

  • Reicherter K, Kaiser A, Stackebrandt W (2005) The post-glacial landscape evolution of the North German Basin: morphology, neotectonics and crustal deformation. Int J Earth Sci 94:1083–1093

    Article  Google Scholar 

  • Rijsdijk KF (2001) Density-driven deformation structures in glacigenic consolidated diamicts: examples from Traeth Y Mwnt, Cardiganshire, Wales, UK. J Sedi Res 71:122–135

    Article  Google Scholar 

  • Rinterknecht VR, Marks L, Piotrowski J, Raisbeck G, Yiou F, Brook E, Clark P (2005) Cosmogenic 10Be ages on the Pomeranian Moraine, Poland. Boreas 34:186–191

    Article  Google Scholar 

  • Rinterknecht VR, Clark PU, Raisbeck GM, Yiou F, Bitinas A, Brook EJ, Marks L, Zelcs V, Lunkka JP, Pavlovskaya IE, Piotrowski JA, Raukas A (2006) The last deglaciation of the southeastern sector of the Scandinavian Ice sheet. Sci 311:1449–1452

    Article  Google Scholar 

  • Scheck M, Bayer U (1999) Evolution of the Northeast German Basin–inferences from a 3D structural model and subsidence analysis. Tectonophys 313:145–169

    Article  Google Scholar 

  • Scherneck HG, Johansson JM, Mitrovica JX, Davis JL (1998) The BIFROST project: GPS determined 3-D displacement rates in Fennoscandia from 800 days of continuous observations in the SWEPO network. Tectonophys 294:305–321

    Article  Google Scholar 

  • Sims JD, Garvin CD (1995) Recurrent liquefaction induced by the 1989 Loma Prieta earthquake and 1990 and 1991 aftershocks: implications for paleoseismicity studies. Bull Seismol Soc Am 85:51–65

    Google Scholar 

  • Sirocko F (1998) Die Entwicklung der nordostdeutschen Ströme unter dem Einfluß jüngster tektonischer Bewegungen. Brandenburgische Geowissenschatliche Beiträge 5:75–80

    Google Scholar 

  • Stackebrandt W, Ludwig AO, Ostaficzuk S (2001) Base of Quaternary deposits of the Baltic Sea depression and adjacent areas (map 2). Brandenburgische Geowissenschaftliche Beiträge 8:13–19

    Google Scholar 

  • Steffen H, Kaufmann G, Wu P (2006) Three-dimensional finite-element modeling of the glacial isostatic adjustment in Fennoscandia. Earth Planet Sci Lett 250:358–375

    Article  Google Scholar 

  • Stewart IS, Sauber J, Rose J (2000) Glacio-seismotectonics: ice sheets, crustal deformation and seismicity. Quat Sci Rev 19:1367–1389

    Article  Google Scholar 

  • Striggow K, Till KH (1987) Einhundertjährige Pegelregistrierung des südwestlichen Ostseeraums Indikatoren für die Existenz kippender starrer Platten beiderseits der Tornquist-Teisseyre-Zone wie für rezente Aktivität dieser Zone. Z Geol Wiss 15:225–241

    Google Scholar 

  • Thorson RM (1989) Glacio-isostatic response of the Puget Sound area, Washington. Geol Soc Am Bull 101:1163–1174

    Article  Google Scholar 

  • Thorson RM (2000) Glacial tectonics: a deeper perspective. Quat Sci Rev 19:1391–1398

    Article  Google Scholar 

  • Trötfen PE, Mörner NA (1997) Varved clay chronology as a means of recording palaeoseismic events in southern Sweden. J Geodyn 24:249–258

    Article  Google Scholar 

  • Uścinowicz S (1999) Southern Baltic area during the last glaciation. Geol Quat 43:137–148

    Google Scholar 

  • Uścinowicz S (2006) A relative sea-level curve for the Polish Southern Baltic Sea. Quat Int 145–146:86–105

    Article  Google Scholar 

  • Vink A, Steffen H, Reinhardt L, Kaufmann G (2007) Holocene relative sea-level change, isostatic subsidence and the radial viscosity structure of the mantle of northwest Europe (Belgium, the Netherlands, Germany, southern North Sea). Quat Sci Rev 26:3249–3275

    Article  Google Scholar 

  • Wahlstrom R (1989) Seismodynamics and postglacial faulting in the Baltic Shield. In: Gregersen S, Basham PW (eds) Earthquakes at the North Atlantic Passive margins: neotectonics and Postglacial Rebound. Kluwer, Dordrecht, pp 467–482

    Google Scholar 

  • Walcott RI (1970) Isostatic response to loading of the crust in Canada. Can J Earth Sci 7:716–729

    Article  Google Scholar 

  • Wang CY (2007) Liquefaction beyond the near field. Seismol Res Lett 78:512–517

    Article  Google Scholar 

  • Woldstedt P (1956) Die Geschichte des Flußnetzes in Norddeutschlandund angrenzende Gebiete. Eiszeitalter und Gegenwart 7:5–12

    Google Scholar 

  • Wu P (1996) Changes in orientation of near‐surface stress field as constraints to mantle viscosity and horizontal stress differences in eastern Canada. Geophys Res Lett 23:2263–2266

    Article  Google Scholar 

  • Wu P, Johnston P, Lambeck K (1999) Postglacial rebound and fault instability in Fennoscandia. Geophys J Int 139:657–670

    Article  Google Scholar 

  • Zhang B, Liao Y, Guo S, Wallace RE, Bucknam RC, Hanks TC (1986) Fault scarps related to the 1739 earthquake and seismicity of the Yinchuan graben, Ningxia Huizu Zizhiqu, China. Bull Seismol Soc Am 76:1253–1287

    Google Scholar 

Download references

Acknowledgments

The first author acknowledges the financial support from the German Science Foundation (DFG-grant Nr. HO 2550/8-1). Figure 13 is based on an earlier draft of Sonja Groten and Jörg Schoel (RWTH Aachen University) who also helped during fieldwork. Fieldwork was further supported by students of the Inst. of Geography and Geology of Ernst-Moritz-Arndt University Greifswald: mente et malleo. Thanks for your help Frank. The constructive review by NM Mörner is highly appreciated. The authors are grateful for the English review done by Stefani German (GUtech, Muscat). This paper is a contribution to IGCP 588, “Preparing for coastal change: A detailed process-response framework for coastal change at different timescales.”

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gösta Hoffmann.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hoffmann, G., Reicherter, K. Soft-sediment deformation of Late Pleistocene sediments along the southwestern coast of the Baltic Sea (NE Germany). Int J Earth Sci (Geol Rundsch) 101, 351–363 (2012). https://doi.org/10.1007/s00531-010-0633-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00531-010-0633-z

Keywords

Navigation