Skip to main content
Log in

Partial regularity and smooth topology-preserving approximations of rough domains

  • Published:
Calculus of Variations and Partial Differential Equations Aims and scope Submit manuscript

Abstract

For a bounded domain \(\Omega \subset {\mathbb R}^m, m\ge 2,\) of class \(C^0\), the properties are studied of fields of ‘good directions’, that is the directions with respect to which \(\partial \Omega \) can be locally represented as the graph of a continuous function. For any such domain there is a canonical smooth field of good directions defined in a suitable neighbourhood of \(\partial \Omega \), in terms of which a corresponding flow can be defined. Using this flow it is shown that \(\Omega \) can be approximated from the inside and the outside by diffeomorphic domains of class \(C^\infty \). Whether or not the image of a general continuous field of good directions (pseudonormals) defined on \(\partial \Omega \) is the whole of \(S^{m-1}\) is shown to depend on the topology of \(\Omega \). These considerations are used to prove that if \(m=2,3\), or if \(\Omega \) has nonzero Euler characteristic, there is a point \(P\in \partial \Omega \) in the neighbourhood of which \(\partial \Omega \) is Lipschitz. The results provide new information even for more regular domains, with Lipschitz or smooth boundaries.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Notes

  1. i.e. for each point \(P\in \partial \Omega \) there exists a neighbourhood U(P) in \({\mathbb R}^m\) and a non-zero vector \(b(P)\in {\mathbb R}^m\) such that \(x+tb\in \Omega , \text{ for } \text{ all } x\in \overline{\Omega }\cap U(P), 0<t<1\).

  2. if \(m\ge 4\) under the possibly unnecessary assumption that the Euler characteristic of \(\Omega \) is nonzero.

References

  1. Amrouche, C., Ciarlet, P.G., Mardare, C.: On a lemma of Jacques-Louis Lions and its relation to other fundamental results. J. de Maths. Pures et Appliquées (2015). doi:10.1016/j.matpur.2014.11.007

    MATH  Google Scholar 

  2. Ball, J.M., Zarnescu, A.: Orientability and energy minimization in liquid crystal models. Arch. Ration. Mech. Anal. 202(2), 493–535 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  3. Bedford, S.: Personal communication

  4. Bredon, G.E.: Topology and geometry. In: Graduate Texts in Mathematics, vol. 139. Springer, New York (1993)

  5. Brown, M.: Locally flat embeddings of topological manifolds. Ann. Math. 75, 331–341 (1962)

    Article  MathSciNet  MATH  Google Scholar 

  6. Cairns, S.S.: Homeomorphisms between topological manifolds and analytic manifolds. Ann. Math. 41, 796–808 (1940)

    Article  MathSciNet  MATH  Google Scholar 

  7. Chavel, I.: Riemannian geometry: a modern introduction, 2nd edn. Cambridge University Press, Cambridge (2006)

    Book  MATH  Google Scholar 

  8. Connelly, R.: A new proof of Brown’s collaring theorem. Proc. Am. Math. Soc. 27, 180–182 (1971)

    MathSciNet  MATH  Google Scholar 

  9. Coutand, D., Hole, J., Shkoller, S.: Well-posedness of the free-boundary compressible 3-D Euler equations with surface tension and the zero surface tension limit. SIAM J. Math. Anal. 45(6), 3690–3767 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  10. Delfour, M.C., Zolésio, J.P.: Shapes and geometries. Metrics, analysis, differential calculus, and optimization. 2nd edn. In: Advances in Design and Control, vol. 22. Society for Industrial and Applied Mathematics (SIAM), Philadelphia (2011)

  11. Dindoš, M., Hwang, S.: The Dirichlet boundary problem for second order parabolic operators satisfying Carleson condition. arXiv:1402.0036

  12. Donaldson, S.K.: Irrationality and the h-cobordism conjecture. J. Differ. Geom. 26(1), 141–168 (1987)

    MathSciNet  MATH  Google Scholar 

  13. Fonseca, I., Gangbo, W.: Degree theory in analysis and applications. In: Oxford Lecture Series in Mathematics and its Applications, 2. Oxford Science Publications. The Clarendon Press, Oxford University Press, New York, (1995)

  14. Fraenkel, L.E.: On regularized distance and related functions. Proc. R. Soc. Edinb. Sect. A Math. 83(1–2), 115–122 (1979)

    Article  MathSciNet  MATH  Google Scholar 

  15. Fraenkel, L.E.: On regularity of the boundary in the theory of Sobolev spaces. Proc. Lond. Math. Soc. 3(3), 385–427 (1979)

    Article  MathSciNet  MATH  Google Scholar 

  16. Freedman, M.H.: The topology of four-dimensional manifolds. J. Differ. Geom. 17, 357–453 (1982)

    MathSciNet  MATH  Google Scholar 

  17. Friedman, A.: Variational principles and free-boundary problems. In: A Wiley-Interscience Publication. Pure and Applied Mathematics. Wiley, New York (1982)

  18. Grisvard, P.: Elliptic problems in nonsmooth domains. In: Monographs and Studies in Mathematics, vol. 24. Pitman (Advanced Publishing Program), Boston (1985)

  19. Guillemin, V., Pollack, A.: Differential topology. Prentice-Hall Inc, Englewood Cliffs (1974)

    MATH  Google Scholar 

  20. Hadžić, M., Shkoller, S.: Well-posedness for the classical Stefan problem and the zero surface tension limit. arXiv:1112.5817

  21. Hale, J.K.: Asymptotic behavior of dissipative systems. In: Mathematical Surveys and Monographs. American Mathematical Society, Providence (1988)

  22. Hamilton, A.J.S.: The triangulation of 3-manifolds. Q. J. Math. 27, 63–70 (1976)

    Article  MathSciNet  MATH  Google Scholar 

  23. Hatcher, A.: Algebraic topology. Cambridge University Press, Cambridge (2002)

    MATH  Google Scholar 

  24. Hatcher, A.: The Kirby torus trick for surfaces. Preprint 2013, arXiv:1312.3518

  25. Heinonen, J.: Lectures on Lipschitz analysis. Rep. Univ. Jyväskylä Dept. Math. Stat. 100, 1–77 (2005)

    MathSciNet  MATH  Google Scholar 

  26. Henry, D.: Perturbation of the boundary in boundary-value problems of partial differential equations. With editorial assistance from Jack Hale and Antônio Luiz Pereira. London Mathematical Society Lecture Note Series, 318. Cambridge University Press, Cambridge (2005)

  27. Hirsch, M.W.: Differential topology. In: Graduate Texts in Mathematics, vol. 33. Springer, New York (1976)

  28. Hofmann, S., Mitrea, M., Taylor, M.: Geometric and transformational properties of Lipschitz domains, Semmes-Kenig-Toro domains, and other classes of finite perimeter domains. J. Geom. Anal. 17, 593–647 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  29. Iwaniec, T., Onninen, J.: Deformations of finite conformal energy: boundary behavior and limit theorems. Trans. Am. Math. Soc. 363(11), 5605–5648 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  30. Jones, P.W., Katz, N.H., Vargas, A.: Checkerboards, Lipschitz functions and uniform rectifiability. Rev. Mat. Iberoam. 13(1), 189–210 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  31. Kirby, R.C.: The topology of 4-manifolds. Lecture Notes in Mathematics, vol. 1374. Springer, Berlin (1989)

  32. Kirby, R.C., Siebenmann, L.C.: Foundational essays on topological manifolds, smoothings, and triangulations. University of Tokyo Press, Princeton University Press, Tokyo, Princeton (1977)

    Book  MATH  Google Scholar 

  33. Kleiner, B., Lott, J.: Locally collapsed 3-manifolds. arXiv:1005.5106v2

  34. Kolar, J., Kristensen, J.: Gradient ranges of bumps on the plane. Proc. Am. Math. Soc. 133(6), 1699–1706 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  35. Kozlov, V.A., Mazya, V.G., Rossmann, J.: Elliptic boundary value problems in domains with point singularities. In: Mathematical Surveys and Monographs, vol. 52. American Mathematical Society, Providence (1997)

  36. Kuratowski, C.: Topology, vol. II. English edition. Academic Press and PWN-Polish Scientific Publishers, Warsaw (1966)

    MATH  Google Scholar 

  37. Lackenby M.: Personal communication

  38. Lee, J.M.: Introduction to topological manifolds. In: Graduate Texts in Mathematics, vol. 202. Springer, New York (2000)

  39. Lieberman, G.M.: Regularized distance and its applications. Pac. J. Math. 117(2), 329–352 (1985)

    Article  MathSciNet  MATH  Google Scholar 

  40. Lieberman, G.M.: Second order parabolic differential equations. World Scientific Publishing Co., Inc, River Edge (1996)

    Book  MATH  Google Scholar 

  41. Lieberman, G.M.: The conormal derivative problem for equations of variational type in nonsmooth domains. Trans. AMS 330(1), 41–67 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  42. Mazýa, V.G.: Sobolev spaces. In: Springer Series in Soviet Mathematics. Springer, Berlin (1985)

  43. Mazýa, V.G., Poborchi, S.V.: Differentiable functions on bad domains. World Scientific Publishing Co., Inc., River Edge (1997)

    MATH  Google Scholar 

  44. Milnor, J.W.: Topology from the differentiable viewpoint. The University Press of Virginia, Charlottesville (1965)

    MATH  Google Scholar 

  45. Milnor, J.W.: Differential topology forty-six years later. Not. Am. Math. Soc. 58(6), 804–809 (2011)

    MathSciNet  MATH  Google Scholar 

  46. McCarthy, J.: An everywhere continuous nowhere differentiable function. Am. Math. Mon. 60, 709 (1953)

    Article  MathSciNet  Google Scholar 

  47. Moise, E.E.: Affine structures in 3-manifolds. V. The triangulation theorem and Hauptvermutung. Ann. Math. 56, 96–114 (1952)

    Article  MathSciNet  MATH  Google Scholar 

  48. Mohammadi, B., Pironneau, P.: Applied shape optimization for fluids. In: Numerical Mathematics and Scientific Computation, 2nd edn. Oxford University Press, Oxford (2010)

  49. Munkres, J.: Obstructions to the smoothing of piecewise-differentiable homeomorphisms. Ann. Math. 72, 521–554 (1960)

    Article  MathSciNet  MATH  Google Scholar 

  50. Nečas, J.: On domains of type \({\cal N}\). Czechoslov. Math. J. 12, 274–287 (1962)

    MATH  Google Scholar 

  51. Nečas, J.: Direct methods in the theory of elliptic equations. Translated from the: French original by Gerard Tronel and Alois Kufner. Springer Monographs in Mathematics, Springer, Heidelberg (1967). 2012

  52. Pakzad, M.R., Rivière, T.: Weak density of smooth maps for the Dirichlet energy between manifolds. Geom. Funct. Anal. 13(1), 223–257 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  53. Pugh, C.: Smoothing a topological manifold. Topol. Appl. 124(3), 487–503 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  54. Radó, T.: Über den Begriff der Riemannschen Fläche. Acta Sci. Math. Szeged. 2, 101–121 (1925)

    MATH  Google Scholar 

  55. Scorpan, A.: The wild world of 4-manifolds. American Mathematical Society, Providence (2005)

    MATH  Google Scholar 

  56. Semmes, S.: Finding structure in sets with little smoothness. In: Proceedings of the International Congress of Mathematicians, Zurich (1994), pp. 875–885. Birkhäuser, Boston (1995)

  57. Schippers, E., Staubach, W.: Variation of Neumann and Green functions under homotopies of the boundary. Isr. J. Math. 173, 279–303 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  58. Spivak, M.: A comprehensive introduction to differential geometry, vol. III, 2nd edn. Publish or Perish, Inc., Wilmington (1981)

    MATH  Google Scholar 

  59. Stallings, J.R.: The piecewise-linear structure of Euclidean space. In: Proc. Cambridge Philos. Soc., vol. 58, pp. 481–488 (1962)

  60. Stein, E.M.: Singular integrals and differentiability properties of functions. in: Princeton Mathematical Series, vol. 30. Princeton University Press, Princeton (1970)

  61. Verchota, G.C.: Layer potentials and boundary value problems for Laplace’s equation on Lipschitz domains. University of Minnesota, Thesis (1982)

  62. Verchota, G.C.: Layer potentials and regularity for the Dirichlet problem for Laplace’s equation in Lipschitz domains. J. Funct. Anal. 59(3), 572–611 (1984)

    Article  MathSciNet  MATH  Google Scholar 

  63. Wilson Jr., F.W.: Implicit submanifolds. J. Math. Mech. 18, 229–236 (1968/1969)

  64. Whitehead, J.H.C.: Manifolds with transverse fields in Euclidean space. Ann. Math. 73, 154–212 (1961)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

The research of both authors was partly supported by EPSRC grants EP/E010288/1 and by the EPSRC Science and Innovation award to the Oxford Centre for Nonlinear PDE (EP/E035027/1). The research of JMB was also supported by the European Research Council under the European Union’s Seventh Framework Programme (FP7/2007-2013)/ERC grant agreement no 291053 and by a Royal Society Wolfson Research Merit Award. The research of AZ was partially supported by the Basque Government through the BERC 2014-2017 program; and by the Spanish Ministry of Economy and Competitiveness MINECO: BCAM Severo Ochoa accreditation SEV-2013-0323. We are especially grateful to Marc Lackenby for the suggestion of an example forming the basis of the second part of Proposition 6.1 as well as for other advice, to Vladimir Šverák, whose perceptive questions after a seminar of JMB at the University of Minnesota on an earlier version of the paper led to radical improvements, and to Rob Kirby for long discussions concerning smoothing of manifolds that are incorporated in Remark 5.4. We are also grateful to Moe Hirsch for his interest and various references, and to Nigel Hitchin for useful comments. Finally we are grateful to anonymous referees for pointing out to us the connection with the theory of smoothing of manifolds, for a simplification of our original example in the second part of Proposition 6.1, and for mentioning various relevant references.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to John M. Ball.

Additional information

Communicated by L. Ambrosio.

In memoriam J. Bryce McLeod.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ball, J.M., Zarnescu, A. Partial regularity and smooth topology-preserving approximations of rough domains. Calc. Var. 56, 13 (2017). https://doi.org/10.1007/s00526-016-1092-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00526-016-1092-6

Mathematics Subject Classification

Navigation