Skip to main content
Log in

Variational properties of the first curve of the Fučík spectrum for elliptic operators

  • Published:
Calculus of Variations and Partial Differential Equations Aims and scope Submit manuscript

Abstract

In this paper we present a new variational characteriztion of the first nontrival curve of the Fučík spectrum for elliptic operators with Dirichlet boundary conditions. Moreover, we describe the asymptotic behaviour and some properties of this curve and of the corresponding eigenfunctions. In particular, this new characterization allows us to compare the first curve of the Fučík spectrum with the infinitely many curves we obtained in previous works (see Molle and Passaseo, C R Math Acad Sci Paris 351:681–685, 2013; Ann I H Poincare—AN, 2014): for example, we show that these curves are all asymptotic to the same lines as the first curve, but they are all distinct from such a curve.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Ambrosetti, A., Prodi, G.: On the inversion of some differentiable mappings with singularities between Banach spaces. Ann. Mat. Pura Appl. 93(4), 231–246(1972)

  2. Arias, M., Campos, J.: Radial Fučík spectrum of the Laplace operator. J. Math. Anal. Appl. 190(3), 654–666 (1995)

    Article  MATH  MathSciNet  Google Scholar 

  3. Arias, M., Campos, J., Gossez, J.-P.: On the antimaximum principle and the Fučík spectrum for the Neumann \(p\)-Laplacian. Diff. Integral Equ. 13(1–3), 217–226 (2000)

    MATH  MathSciNet  Google Scholar 

  4. Benci, V.: A geometrical index for the group \(S^1\) and some applications to the study of periodic solutions of ordinary differential equations. Comm. Pure Appl. Math. 34(4), 393–432 (1981)

    Article  MATH  MathSciNet  Google Scholar 

  5. Ben-Naoum, A.K., Fabry, C., Smets, D.: Structure of the Fučík spectrum and existence of solutions for equations with asymmetric nonlinearities. Proc. Roy. Soc. Edinburgh Sect. A 131(2), 241–265 (2001)

    Article  MATH  MathSciNet  Google Scholar 

  6. Berestycki, H.: Le nombre de solutions de certains problémes semi-linéaires elliptiques. J. Funct. Anal. 40(1), 1–29 (1981)

    Article  MATH  MathSciNet  Google Scholar 

  7. Berestycki, H., Lasry, J.-M., Mancini, G., Ruf, B.: Existence of multiple periodic orbits on star-shaped Hamiltonian surfaces. Comm. Pure Appl. Math. 38(3), 253–289 (1985)

    Article  MATH  MathSciNet  Google Scholar 

  8. Các, N.P.: On nontrivial solutions of a Dirichlet problem whose jumping nonlinearity crosses a multiple eigenvalue. J. Diff. Equ. 80(2), 379–404 (1989)

    Article  MATH  Google Scholar 

  9. Các, N.P.: On a boundary value problem with nonsmooth jumping nonlinearity. J. Diff. Equ. 93(2), 238–259 (1991)

    Article  MATH  Google Scholar 

  10. Caccioppoli, R.: Un principio di inversione per le corrispondenze funzionali e sue applicazioni alle equazioni alle derivate parziali. Atti Acc. Naz. Lincei 16, 392–400 (1932)

    Google Scholar 

  11. Cerami, G., Molle, R., Passaseo, D.: Multiplicity of positive and nodal solutions for scalar field equations. J. Differential Equations (2014). doi:10.1016/j.jde.2014.07.002

  12. Cerami, G., Passaseo, D., Solimini, S.: Infinitely many positive solutions to some scalar field equations with nonsymmetric coefficients. Comm. Pure Appl. Math. 66(3), 372–413 (2013)

    Article  MATH  MathSciNet  Google Scholar 

  13. Cerami, G., Passaseo, D., Solimini, S.: Nonlinear scalar field equations: existence of a solution with infinitely many bumps. Ann. I. H. Poincare - AN (2013). doi:10.1016/j.anihpc.2013.08.008

  14. Clement, P., Peletier, L.: An antimaximum principle for second order elliptic operators. J. Diff. Eq. 34, 218–229 (1979)

    Article  MATH  MathSciNet  Google Scholar 

  15. Cuesta, M., de Figueiredo, D., Gossez, J.-P.: The beginning of the Fučík spectrum for the \(p\)-Laplacian. J. Diff. Equ. 159(1), 212–238 (1999)

    Article  MATH  Google Scholar 

  16. Cuesta, M., Gossez, J.-P.: A variational approach to nonresonance with respect to the Fučík spectrum. Nonlinear Anal. 19(5), 487–500 (1992)

    Article  MATH  MathSciNet  Google Scholar 

  17. Dancer, E.N.: On the Dirichlet problem for weakly non-linear elliptic partial differential equations. Proc. Roy. Soc. Edinburgh Sect. A 764, 283–300 (1976/77)

  18. Dancer, E.N.: On the existence of solutions of certain asymptotically homogeneous problems. Math. Z. 177(1), 33–48 (1981)

    Article  MATH  MathSciNet  Google Scholar 

  19. Dancer, E.N.: Generic domain dependence for nonsmooth equations and the open set problem for jumping nonlinearities. Topol. Methods Nonlinear Anal. 1(1), 139–150 (1993)

    MATH  MathSciNet  Google Scholar 

  20. de Figueiredo, D.G., Gossez, J.-P.: On the first curve of the Fučík spectrum of an elliptic operator. Diff. Integ. Equ. 7(5–6), 1285–1302 (1994)

    MATH  Google Scholar 

  21. Fučík, S.: Nonlinear equations with noninvertible linear part. Czechoslovak Math. J. 24(99), 467–495 (1974)

    MathSciNet  Google Scholar 

  22. Fučík, S.: Boundary value problems with jumping nonlinearities. Časopis Pěst. Mat. 101(1), 69–87 (1976)

    MATH  Google Scholar 

  23. Fučík, S., Kufner, A.: Nonlinear differential equations. Studies in Applied Mechanics, 2. Elsevier Scientific Publishing Co., Amsterdam-New York (1980)

  24. T. Gallouët, O. Kavian, Résultats d’existence et de non-existence pour certains problèmes demi-linéaires à l’infini. Ann. Fac. Sci. Toulouse Math. 3(5), 3–4, 201–246 (1981)

  25. Gallouët, T., Kavian, O.: Resonance for jumping nonlinearities. Comm. Partial Diff. Equ. 7(3), 325–342 (1982)

    Article  MATH  Google Scholar 

  26. J.V.A. Gonçalves, C.A. Magalhães, Semilinear elliptic problems with crossing of the singular set. Trabalhos de Matemática n. 263, Univ. de Brasilia (1992)

  27. Horák, J., Reichel, W.: Analytical and numerical results for the Fučík spectrum of the Laplacian. J. Comput. Appl. Math. 161(2), 313–338 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  28. Li, C., Li, S., Liu, Z., Pan, J.: On the Fučík spectrum. J. Diff. Equ. 244(10), 2498–2528 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  29. Magalhães, C.A.: Semilinear elliptic problem with crossing of multiple eigenvalues. Comm. Partial Diff. Equ. 15(9), 1265–1292 (1990)

    Article  MATH  Google Scholar 

  30. Margulies, C.A., Margulies, W.: An example of the Fučík spectrum. Nonlinear Anal. 29(12), 1373–1378 (1997)

    Article  MATH  MathSciNet  Google Scholar 

  31. Marzantowicz, W.: A Borsuk-Ulam theorem for orthogonal \(T^k\) and \(Z^r_p\) actions and applications. J. Math. Anal. Appl. 137(1), 99–121 (1989)

    Article  MATH  MathSciNet  Google Scholar 

  32. Massa, E., Ruf, B.: On the Fučík spectrum of the Laplacian on a torus. J. Funct. Anal. 256(5), 1432–1452 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  33. Molle, R., Passaseo, D.: Multiple solutions for a class of elliptic equations with jumping nonlinearities. Ann. Inst. H. Poincaré Anal. Non Linéaire. 2, 529–553 (2010)

  34. Molle, R., Passaseo, D.: Existence and multiplicity of solutions for elliptic equations with jumping nonlinearities. J. Funct. Anal. 259(9), 2253–2295 (2010)

    Article  MATH  MathSciNet  Google Scholar 

  35. Molle, R., Passaseo, D.: Elliptic equations with jumping nonlinearities involving high eigenvalues. Calc. Var. Partial Diff. Equ. 49(1/2), 861–907 (2014)

    Article  MATH  MathSciNet  Google Scholar 

  36. Molle, R., Passaseo, D.: New properties of the Fučík spectrum. C. R. Math. Acad. Sci. Paris 351(17/18), 681–685 (2013)

    Article  MATH  MathSciNet  Google Scholar 

  37. Molle, R., Passaseo, D.: Infinitely many new curves of the Fučík spectrum. Ann. I. H. Poincaré - AN (2014). doi:10.1016/j.anihpc.2014.05.007

    Google Scholar 

  38. Molle, R., Passaseo, D.; On the first curve of the Fučík spectrum for elliptic operators. Atti Accad. Naz. Lincei Rend. Lincei Mat. Appl. 25(2), 141–146 (2014)

  39. Rabinowitz, P.H.: Minimax methods in critical point theory with applications to differential equations. CBMS Regional Conference Series in Mathematics, 65. American Mathematical Society, Providence, RI (1986)

  40. Ruf, B.: On nonlinear elliptic problems with jumping nonlinearities. Ann. Mat. Pura Appl. 128(4), 133–151 (1981)

  41. Schechter, M.: The Fučík spectrum. Indiana Univ. Math. J. 43(4), 1139–1157 (1994)

    Article  MATH  MathSciNet  Google Scholar 

  42. Schechter, M.: Type (II) regions between curves of the Fucik spectrum. Nonlinear Diff. Equ. Appl. 4(4), 459–476 (1997)

    Article  MATH  MathSciNet  Google Scholar 

  43. Solimini, S.: Some remarks on the number of solutions of some nonlinear elliptic problems. Ann. Inst. H. Poincaré - Anal. Non Linéaire 2(2), 143–156 (1985)

Download references

Acknowledgments

The authors have been supported by the “Gruppo Nazionale per l’Analisi Matematica, la Probabilità e le loro Applicazioni (GNAMPA)” of the Istituto Nazionale di Alta Matematica (INdAM).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Riccardo Molle.

Additional information

Communicated by P. Rabinowitz.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Molle, R., Passaseo, D. Variational properties of the first curve of the Fučík spectrum for elliptic operators. Calc. Var. 54, 3735–3752 (2015). https://doi.org/10.1007/s00526-015-0920-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00526-015-0920-4

Mathematics Subject Classification

Navigation