Skip to main content
Log in

The half space property for cmc 1/2 graphs in \(\mathbb {E}(-1,\tau )\)

  • Published:
Calculus of Variations and Partial Differential Equations Aims and scope Submit manuscript

Abstract

In this paper, we prove a half-space theorem with respect to constant mean curvature 1/2 entire graphs in \(\mathbb {E}(-1,\tau )\). If \(\Sigma \) is such an entire graph and \(\Sigma '\) is a properly immersed constant mean curvature 1/2 surface included in the mean convex side of \(\Sigma \) then \(\Sigma '\) is a vertical translate of \(\Sigma \). We also have an equivalent statement for the non mean convex side of \(\Sigma \).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Cartier, S., Hauswirth, L.: Deformation of cmc-1/2 surfaces in \(\mathbb{H}^2\times \mathbb{R}\) with vertical ends at infinity. Comm. Anal. Geom. arXiv:1203.0760

  2. Daniel, B.: Isometric immersions into 3-dimensional homogeneous manifolds. Comment. Math. Helv. 82, 87–131 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  3. Daniel, B., Hauswirth, L.: Half-space theorem, embedded minimal annuli and minimal graphs in the Heisenberg group. Proc. Lond. Math. Soc. 3(98), 445–470 (2009)

    MathSciNet  Google Scholar 

  4. Daniel, B., Meeks III, W.H., Rosenberg, H.: Half-space theorems for minimal surfaces in \({\text{ Nil }_3}\) and \({\text{ Sol }_3}\). J. Differ. Geom. 88, 41–59 (2011)

    MATH  MathSciNet  Google Scholar 

  5. Espinar, J.M., de Oliveira, I.S.: Locally convex surfaces immersed in a Killing submersion, preprint. arXiv:1002.1329

  6. Fernández, I., Mira, P.: Holomorphic quadratic differentials and the Bernstein problem in Heisenberg space. Trans. Am. Math. Soc. 361, 5737–5752 (2009)

    Article  MATH  Google Scholar 

  7. Hauswirth, L., Rosenberg, H., Spruck, J.: On complete mean curvature \(\frac{1}{2}\) surfaces in \(\mathbb{H}^2\times \mathbb{R}\). Comm. Anal. Geom. 16, 989–1005 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  8. Hoffman, D., Meeks III, W.H.: The strong halfspace theorem for minimal surfaces. Invent. Math. 101, 373–377 (1990)

    Article  MATH  MathSciNet  Google Scholar 

  9. Korevaar, N.: An easy proof of the interior gradient bound for solutions to the prescribed mean curvature equation. In: Nonlinear functional analysis and its applications, Part 2 (Berkeley, CA 1983), vol. 45 of proceedings of symposia in pure mathematics pp. 81–89, American Mathematical Society (1986)

  10. Manzano, J.: On the classification of Killing submersions and their isometries. Pac. J. Math. arXiv:1211.2115

  11. Mazet, L.: A general halfspace theorem for constant mean curvature surfaces. Am. J. Math. 135, 801–834 (2013)

    Article  MATH  MathSciNet  Google Scholar 

  12. Meeks III, W.H., Rosenberg, H.: Maximum principles at infinity. J. Differ. Geom. 79, 141–165 (2008)

    MATH  MathSciNet  Google Scholar 

  13. Nelli, B., Sa Earp, R.: A halfspace theorem for mean curvature \(H=\frac{1}{2}\) surfaces in \(\mathbb{H}^2\times \mathbb{R}\). J. Math. Anal. Appl. 365, 167–170 (2010)

    Article  MATH  MathSciNet  Google Scholar 

  14. Peñafiel, C.: On \({H}=1/2\) surfaces in \(\widetilde{PSL}_2({\mathbb{R}})\), preprint. arXiv:1008.0879

  15. Peñafiel, C.: Graphs and multi-graphs in homogeneous 3-manifolds with isometry groups of dimension 4. Proc. Am. Math. Soc. 140, 2465–2478 (2012)

    Article  MATH  Google Scholar 

  16. Rodriguez, L., Rosenberg, H.: Half-space theorems for mean curvature one surfaces in hyperbolic space. Proc. Am. Math. Soc. 126, 2755–2762 (1998)

    Article  MATH  MathSciNet  Google Scholar 

  17. Ros, A., Rosenberg, H.: Properly embedded surfaces with constant mean curvature. Am. J. Math. 132, 1429–1443 (2010)

    MATH  MathSciNet  Google Scholar 

  18. Rosenberg, H., Schulze, F., Spruck, J.: The half-space property and entire positive minimal graphs in \({M}\times \mathbb{R}\). J. Differ. Geom. 95, 321–336 (2013)

    MATH  MathSciNet  Google Scholar 

  19. Solomon, B.: On foliations of \(\mathbb{R}^{n+1}\) by minimal hypersurfaces. Comment. Math. Helv. 61, 67–83 (1986)

    Article  MATH  MathSciNet  Google Scholar 

  20. Spruck, J.: Interior gradient estimates and existence theorems for constant mean curvature graphs in \(M^n\times \mathbb{R}\). Pure Appl. Math. Q. 3, 785–800 (2007)

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Laurent Mazet.

Additional information

Communicated by A. Malchiodi.

The author was partially supported by the ANR-11-IS01-0002 grant.

Appendices

Appendix 1: Some computations in Killing Riemannian submersions

In this appendix we recall some definitions about Killing Riemannian submersions and make some computations concerning graphs in such an ambient space (see [5, 10]).

Let \((M^{n+1},\bar{g})\) and \((B^n,(\cdot ,\cdot ))\) be two complete Riemannian manifolds. Let \(\pi :M\rightarrow B\) be a submersion. The tangent space \(T_pM\) at \(p\) then splits in \(\ker d\pi \oplus (\ker d\pi )^\perp \) where \(\ker d\pi \) is the 1-dimensional space of vertical vectors and \((\ker d\pi )^\perp \) is the space of horizontal vectors. The submersion \(\pi \) is called Riemannian if \(d\pi \) is an isometry from \((\ker d\pi )^\perp \) to \(T_{\pi (p)}B\).

Definition 1

A Riemannian submersion \(\pi :M\rightarrow B\) is a Killing submersion if it admits a complete vertical unit Killing vector field.

If \(\pi :M\rightarrow B\) is a Killing Riemannian submersion, we denote by \(\xi \) this unit Killing vector field. Besides, if \(X\) is a vector field in \(B\), we denote by \(\widetilde{X}\) its horizontal lift by \(\pi \).

Using this notation there exists a 2-form \(\omega \) on \(B\) such that for any vector fields \(X,Y\) on \(B\) we have:

$$\begin{aligned}{}[\widetilde{X},\widetilde{Y}]=\widetilde{[X,Y]}+\omega (X,Y)\xi \end{aligned}$$

We notice that \([\widetilde{X},\xi ]=0\). When \(X\) is a tangent vector to \(B\), we denote \(X^\omega \) the vector such that \((X^\omega ,Y)=\omega (X,Y)\) for any \(Y\). With this notation the Levi-Civita connection of \(M\) and \(B\) are relied by

$$\begin{aligned} \overline{\nabla }_{\widetilde{X}}\widetilde{Y}&= \widetilde{\nabla _XY}+\frac{1}{2}\omega (X,Y)\xi \end{aligned}$$
(11)
$$\begin{aligned} \overline{\nabla }_{\widetilde{X}}\xi&= -\frac{1}{2}\widetilde{X^\omega } \end{aligned}$$
(12)
$$\begin{aligned} \overline{\nabla }_\xi \xi&= 0 \end{aligned}$$
(13)

In a Killing Riemannian submersion, we are interested by surfaces that are the image of sections \(\sigma \). These surfaces are called vertical graphs in \(M\) and the image of \(\sigma \) is also called the graph of \(\sigma \). If \(\sigma \) is a section defined over \(\Omega \subset B\), we define on \(\Omega \) a vector field \(G\sigma \) by the following property:

$$\begin{aligned} (G\sigma ,X)=\bar{g}(\hbox {d}\sigma (X),\xi ) \end{aligned}$$

for any \(X\) tangent to \(B\). This vector field \(G\sigma \) plays the role of the gradient of a function.

First, the upward pointing unit normal to the graph of \(\sigma \) is given by the following expression:

$$\begin{aligned} N=\frac{-\widetilde{G\sigma }+\xi }{\sqrt{1+\Vert G\sigma \Vert ^2}} \end{aligned}$$

In the following, we denote \(\sqrt{1+\Vert G\sigma \Vert ^2}\) by \(W\). In fact the expression of \(N\) is defined in the whole \(\pi ^{-1}(\Omega )\) and the mean curvature of the graph of \(\sigma \) is given by

$$\begin{aligned} nH=-{{\mathrm{div}}}_{\bar{g}}\left( \frac{-\widetilde{G\sigma }+\xi }{W}\right) \end{aligned}$$

So if \((E_i)\) is an orthonormal frame of \(T_pB\) we have

$$\begin{aligned} nH&=-\sum _i\bar{g}\left( \overline{\nabla }_{\widetilde{E}_i} \frac{-\widetilde{G\sigma }+\xi }{W}, \widetilde{E}_i\right) -\bar{g}\left( \overline{\nabla }_\xi \frac{-\widetilde{G\sigma }+\xi }{W}, \xi \right) \\&=\sum _i\bar{g}\left( \widetilde{\nabla _{E_i}\frac{G\sigma }{W}},\widetilde{E_i}\right) + \frac{1}{2W}\bar{g}\left( \widetilde{E_i^\omega },\widetilde{E_i}\right) \\&={{\mathrm{div}}}\left( \frac{G\sigma }{W}\right) +\sum _i\frac{1}{2W}\omega (E_i,E_i)\\&={{\mathrm{div}}}\left( \frac{G\sigma }{W}\right) \end{aligned}$$

where \({{\mathrm{div}}}\) denote the divergence operator on \(B\). So the mean curvature is given by

$$\begin{aligned} nH={{\mathrm{div}}}\left( \frac{G\sigma }{\sqrt{1+\Vert G\sigma \Vert ^2}}\right) \end{aligned}$$
(14)

Let us denote by \(\Sigma \) the graph of \(\sigma \). The map \(\sigma : \Omega \rightarrow \Sigma \) is a chart, so let us make some computation using this system of coordinates. We have:

$$\begin{aligned} \hbox {d}\sigma (X)=\widetilde{X}+(G\sigma ,X)\xi \end{aligned}$$

so the induced metric is \(g(X,Y)=(X,Y)+(G\sigma ,X)(G\sigma ,Y)\). If \(u\) is a function on \(\Omega \), we get

$$\begin{aligned} (\nabla u,X)=\hbox {d}u(X)=g(\nabla _g u,X)=(\nabla _g u,X)+(G\sigma ,\nabla _g u) (G\sigma ,X) \end{aligned}$$

Thus \(\nabla u=\nabla _g u+(G\sigma ,\nabla _g u)G\sigma \); this implies that

$$\begin{aligned} \nabla _g u=\nabla u-(\chi _\sigma ,\nabla u)\chi _\sigma \end{aligned}$$

where \(\chi _\sigma =\frac{G\sigma }{\sqrt{1+\Vert G\sigma \Vert ^2}}\). As a consequence, we have:

$$\begin{aligned} g(\nabla _g v,\nabla _g w)&=(\nabla v-(\chi _\sigma ,\nabla v)\chi _\sigma , \nabla w-(\chi _\sigma ,\nabla w)\chi _\sigma )\\&\quad \quad \quad +(G\sigma , \nabla v-(\chi _\sigma , \nabla v)\chi _\sigma )(G\sigma , \nabla w-(\chi _\sigma , \nabla w)\chi _\sigma )\\&=(\nabla v,\nabla w)-(2-\Vert \chi _\sigma \Vert ^2)(\chi _\sigma , \nabla v)(\chi _\sigma , \nabla w)\\&\quad \quad \quad +W^2(1-\Vert \chi _\sigma \Vert ^2)^2(\chi _\sigma , \nabla v)(\chi _\sigma , \nabla w)\\&=(\nabla v,\nabla w)-(\chi _\sigma , \nabla v)(\chi _\sigma , \nabla w) \end{aligned}$$

Besides the divergence operator for the metric \(g\) have the following expression:

$$\begin{aligned} {{\mathrm{div}}}_g X=\frac{1}{\sqrt{1+\Vert G\sigma \Vert ^2}}{{\mathrm{div}}}\left( \sqrt{1+\Vert G\sigma \Vert ^2} X\right) \end{aligned}$$

If \(\Sigma \) has constant mean curvature, the function \(\nu =(N,\xi )\) is a Jacobi function so \(0=\Delta _\Sigma \nu +(Ric_{\bar{g}}(N,N)+\Vert S\Vert ^2)\nu \) with \(S\) the shape operator of \(\Sigma \). Let \(v\) be a function on \(\Sigma \), we then have

$$\begin{aligned} \Delta _\Sigma (\nu v) +(Ric_{\bar{g}}(N,N)+\Vert A\Vert ^2) (\nu v)&= (\Delta _\Sigma \nu )v+2(\nabla _\Sigma \nu ,\nabla _\Sigma v)+\nu (\Delta _\Sigma v)\\&\quad \quad \quad + (Ric_{\bar{g}}(N,N)+\Vert S\Vert ^2) (\nu v)\\&=\nu \left( \Delta _\Sigma v-2\nu \left( \nabla _\Sigma \frac{1}{\nu },\nabla _\Sigma v\right) \right) \end{aligned}$$

Thus \(\nu v\) is a Jacobi function if and only if \(\Delta _\Sigma v-2\nu (\nabla _\Sigma \frac{1}{\nu },\nabla _\Sigma v)=0\). Looking at \(v\) as a function defined on \(\Omega \), since \(\nu =W^{-1}\), it gives:

$$\begin{aligned} 0&=\Delta _g v-2W^{-1}g(\nabla _g W,\nabla _g v)\\&=W^{-1}\big ({{\mathrm{div}}}(W(\nabla v-(\chi _\sigma ,\nabla v)\chi _\sigma ))-2((\nabla W,\nabla v)-(\chi _\sigma , \nabla W) (\chi _\sigma , \nabla v))\big )\\&=W^{-1}\left( {{\mathrm{div}}}\left( W^2\frac{\nabla v-(\chi _\sigma ,\nabla v)\chi _\sigma }{W}\right) -\left( \nabla W^2, \frac{\nabla v-(\chi _\sigma ,\nabla v)\chi _\sigma }{W}\right) \right) \\&=W\left( {{\mathrm{div}}}\left( \frac{\nabla v-(\chi _\sigma ,\nabla v)\chi _\sigma }{W}\right) \right) \end{aligned}$$

So \(v\nu \) is a Jacobi function if and only if

$$\begin{aligned} 0={{\mathrm{div}}}\left( \frac{\nabla v-(\chi _\sigma ,\nabla v)\chi _\sigma }{W}\right) \end{aligned}$$
(15)

Appendix 2: Some barriers

In this appendix, we construct some barriers from above and below on the exterior boundary component of an annulus for (3).

We use the model for \(\mathbb {E}(-1,\tau )\) but we consider hyperbolic polar coordinates on \(D_{-1}\), so \(x=\tanh (\rho /2)\cos \theta \) and \(y=\tanh (\rho /2)\sin \theta \).

Let \(0<\rho _1<\rho _0\) be two radii and \(f\) be a smooth function on \(\{\rho =\rho _0\}\). For \(M\) a constant, we construct a smooth function \(h\) on \(\{\rho _1\le \rho \le \rho _0\}\) such that

  • \(h=f\) on \(\{\rho =\rho _0\}\), \(h\ge M\) in \(\{\rho =\rho _1\}\) and

  • \(\displaystyle {{\mathrm{div}}}_{\mathbb {H}^2}\left( \frac{Gh}{\sqrt{1+\Vert Gh\Vert ^2}}\right) \le 1\)

We see \(f\) as a function of \(\theta \) and we define on \(\{\rho _1\le \rho \le \rho _0\}\) the function \(h(\rho ,\theta )=f(\theta )+\alpha (\rho _0-\rho )\). Let us prove that for \(\alpha \) sufficiently large \(h\) satisfies the expected properties. We have \(h(\rho _0,\theta )=f(\theta )\) and \(h(\rho _1,\theta )=f(\theta )+\alpha (\rho _0-\rho _1)\ge M\) if \(\alpha \ge (M-\min f)/(\rho _0-\rho _1)\). In the polar coordinates, we have

$$\begin{aligned} Gh=-\alpha \partial _\rho + \frac{1}{\sinh \rho }\left( \frac{f'(\theta )}{\sinh \rho }- 2\tau \tanh \frac{\rho }{2}\right) \partial _\theta \end{aligned}$$

Thus

$$\begin{aligned} {{\mathrm{div}}}_{\mathbb {H}^2}\left( \frac{Gh}{\sqrt{1+\Vert Gh\Vert ^2}}\right)&= -\frac{\cosh \rho }{\sinh \rho }\frac{\alpha }{W}+\alpha \frac{\partial _\rho \left( \frac{f'(\theta )}{\sinh \rho }- 2\tau \tanh \frac{\rho }{2}\right) ^2}{2W^3}+\frac{1}{\sinh \rho } \frac{\partial _\theta \left( \frac{f'(\theta )}{\sinh \rho }\right) }{W}\\&\quad \quad -\frac{1}{\sinh \rho } \frac{\left( \frac{f'(\theta )}{\sinh \rho }- 2\tau \tanh \frac{\rho }{2}\right) \partial _\theta \left( \frac{f'(\theta )}{\sinh \rho }- 2\tau \tanh \frac{\rho }{2}\right) ^2}{2W^3} \end{aligned}$$

where

$$\begin{aligned} W=\sqrt{1+\alpha ^2+\left( \frac{f'(\theta )}{\sinh \rho }- 2\tau \tanh \frac{\rho }{2}\right) ^2} \end{aligned}$$

with \(\alpha >0\), there exists a positive constant \(m\) that only depends on \(f, \rho _0\) and \(\rho _1\) such that:

$$\begin{aligned} {{\mathrm{div}}}_{\mathbb {H}^2}\left( \frac{Gh}{\sqrt{1+\Vert Gh\Vert ^2}}\right) \le \frac{m}{\alpha ^2}+\frac{m}{\alpha }+\frac{m}{\alpha ^3} \end{aligned}$$

So when \(\alpha \) is sufficently large, the mean curvature of the graph of \(h\) satisfies the expected estimate.

Now let us define \(k(\rho ,\theta )=f(\theta )+\alpha (\rho _0-\rho )\) with \(\alpha <0\) By choosing \(\alpha \) small, we can ensure that \(k(\rho _1,\theta )\le M\). Moreover, because of the above computation, there is a \(m>0\) such that

$$\begin{aligned} {{\mathrm{div}}}_{\mathbb {H}^2}\left( \frac{Gk}{\sqrt{1+\Vert Gk\Vert ^2}}\right) \ge \frac{\cosh \rho _0}{\sinh \rho _0}\frac{-\alpha }{\sqrt{\alpha ^2+m}}- \frac{m}{\alpha ^2}-\frac{m}{|\alpha |}-\frac{m}{|\alpha |^3} \end{aligned}$$

So choosing \(\alpha \) sufficiently close from \(-\infty , k\) satisfies to

  • \(k=f\) on \(\{\rho =\rho _0\}\), \(k\le M\) in \(\{\rho =\rho _1\}\) and

  • \(\displaystyle {{\mathrm{div}}}_{\mathbb {H}^2}\left( \frac{Gk}{\sqrt{1+\Vert Gk\Vert ^2}}\right) \ge 1\)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mazet, L. The half space property for cmc 1/2 graphs in \(\mathbb {E}(-1,\tau )\) . Calc. Var. 52, 661–680 (2015). https://doi.org/10.1007/s00526-014-0728-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00526-014-0728-7

Mathematics Subject Classification

Navigation