Skip to main content
Log in

Existence and asymptotics for solutions of a non-local Q-curvature equation in dimension three

  • Published:
Calculus of Variations and Partial Differential Equations Aims and scope Submit manuscript

Abstract

We study conformal metrics on \({\mathbb {R}}^{3}\), i.e., metrics of the form \(g_u=e^{2u}|dx|^2\), which have constant \(Q\)-curvature and finite volume. This is equivalent to studying the non-local equation

$$\begin{aligned} (-\Delta )^\frac{3}{2} u = 2 e^{3u}\text { in }{\mathbb {R}}^{3},\quad V:=\int _{{\mathbb {R}}^{3}}e^{3u}\,dx<\infty , \end{aligned}$$

where \(V\) is the volume of \(g_u\). Adapting a technique of A. Chang and W-X. Chen to the non-local framework, we show the existence of a large class of such metrics, particularly for \(V\le 2\pi ^2=|{\mathbb {S}}^3|\). Inspired by previous works of C-S. Lin and L. Martinazzi, who treated the analogue cases in even dimensions, we classify such metrics based on their behavior at infinity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Adimurthi, Druet, O.: Blow-up analysis in dimension \(2\) and a sharp form of Trudinger–Moser inequality. Commun. Partial Differ. Equ. 29, 295–322 (2004)

  2. Adimurthi, Struwe, M.: Global compactness properties of semilinear elliptic equations with critical exponential growth. J. Funct. Anal. 175, 125–167 (2000)

  3. Beckner, W.: Sharp Sobolev inequalities on the sphere and the Moser–Trudinger inequality. Ann. Math. 138(2), 213–242 (1993)

    Article  MATH  MathSciNet  Google Scholar 

  4. Branson, T.: Group representations arising from Lorentz conformal geometry. J. Funct. Anal. 74, 199–293 (1987)

    Article  MATH  MathSciNet  Google Scholar 

  5. Branson, T.: Sharp inequality, the functional determinant and the complementary series. Trans. Am. Math. Soc. 347, 3671–3742 (1995)

    Article  MATH  MathSciNet  Google Scholar 

  6. Chang, S.-Y.A.: Non-linear Elliptic Equations in Conformal Geometry. Zurich Lecture Notes in Advanced Mathematics. EMS, Zurich (2004)

    Book  Google Scholar 

  7. Chang, S.-Y.A., Chen, W.: A note on a class of higher order conformally covariant equations. Discrete Contin. Dyn. Syst. 7(2), 275–281 (2001)

    Article  MATH  MathSciNet  Google Scholar 

  8. Chang, S.-Y.A., Qing, J.: The Zeta functional determinants on manifolds with boundary. I. The formula. J. Funct. Anal. 147, 327–362 (1997)

    Article  MATH  MathSciNet  Google Scholar 

  9. Chang, S.-Y.A., Yang, P.: On uniqueness of solutions of \(n\)-th order differential equations in conformal geometry. Math. Res. Lett. 4, 91–102 (1997)

    Article  MATH  MathSciNet  Google Scholar 

  10. Chen, W., Li, C.: Classification of solutions of some nonlinear elliptic equations. Duke Math. J. 63(3), 615–622 (1991)

    Article  MATH  MathSciNet  Google Scholar 

  11. Druet, O.: Multibumps analysis in dimension \(2\): quantification of blow-up levels. Duke Math. J. 132, 217–269 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  12. Druet, O., Robert, F.: Bubbling phenomena for fourth-order four-dimensional PDEs with exponential growth. Proc. Am. Math. Soc. 3, 897–908 (2006)

    Article  MathSciNet  Google Scholar 

  13. Graham, C.R., Zworski, M.: Scattering matrix in conformal geometry. Invent. Math. 152, 89–118 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  14. Hyder, A., Martinazzi, L.: Conformal metrics on \({\mathbb{R}}^{2m}\) with constant Q-curvature, prescribed volume and asymptotic behavior (2014, preprint)

  15. Lamm, T., Robert, F., Struwe, M.: The heat flow with a critical exponential nonlinearity. J. Funct. Anal. 257, 2951–2998 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  16. Lieb, E.H., Loss, M.: Analysis, 2nd edn. Graduate Studies in Mathematics, vol. 14. American Mathematical Society, Providence (2001). ISBN:0-8218-2783-9

  17. Lin, C.-S.: A classification of solutions of a conformally invariant fourth order equation in \({\mathbb{R}}^{n}\). Comment. Math. Helv. 73(2), 206–231 (1998)

    Article  MATH  MathSciNet  Google Scholar 

  18. Malchiodi, A.: Compactness of solutions to some geometric fourth-order equations. J. Reine Angew. Math. 594, 137–174 (2006)

    MATH  MathSciNet  Google Scholar 

  19. Malchiodi, A., Struwe, M.: \(Q\)-curvature flow on \(S^4\). J. Differ. Geom. 73, 1–44 (2006)

    MATH  MathSciNet  Google Scholar 

  20. Martinazzi, L.: Classification of solutions to the higher order Liouville’s equation on \({\mathbb{R}}^{2m}\). Math. Z. 263, 307–329 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  21. Martinazzi, L.: Concentration-compactness phenomena in higher order Liouville’s equation. J. Funct. Anal. 256, 3743–3771 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  22. Martinazzi, L.: A threshold phenomenon for embeddings of \(H^m_0\) into Orlicz spaces. Calc. Var. Partial Differ. Equ. 36, 493–506 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  23. Martinazzi, L.: Quantization for the prescribed Q-curvature equation on open domains. Commun. Contemp. Math. 13, 533–551 (2011)

    Article  MATH  MathSciNet  Google Scholar 

  24. Martinazzi, L.: Conformal metrics on \({\mathbb{R}}^{2m}\) with constant \(Q\)-curvature and large volume. Ann. Inst. Henri Poincaré (C) 30, 969–982 (2013)

  25. Martinazzi, L., Struwe, M.: Quantization for an elliptic equation of order 2m with critical exponential non-linearity. Math. Z. 270, 453–487 (2012)

    Article  MATH  MathSciNet  Google Scholar 

  26. Martinazzi, L., Petrache, M.: Asymptotics and quantization for a mean-field equation of higher order. Commun. Partial Differ. Equ. 35, 1–22 (2010)

    Article  MathSciNet  Google Scholar 

  27. Palais, R.S.: The principle of symmetric criticality. Commun. Math. Phys. 69, 19–30 (1979)

    Article  MATH  MathSciNet  Google Scholar 

  28. Robert, F.: Concentration phenomena for a fourth order equation with exponential growth: the radial case. J. Differ. Equ. 231, 135–164 (2006)

    Article  MATH  Google Scholar 

  29. Robert, F.: Quantization effects for a fourth order equation of exponential growth in dimension four. Proc. R. Soc. Edinb. Sect. A 137, 531–553 (2007)

    Article  MATH  Google Scholar 

  30. Robert, F., Struwe, M.: Asymptotic profile for a fourth order PDE with critical exponential growth in dimension four. Adv. Nonlinear Stud. 4, 397–415 (2004)

    MATH  MathSciNet  Google Scholar 

  31. Robert, F., Wei, J.: Asymptotic behavior of a fourth order mean field equation with Dirichlet boundary condition. Indiana Univ. Math. J. 57, 2039–2060 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  32. Silvestre, L.: Regularity of the obstacle problem for a fractional power of the Laplace operator. Commun. Pure Appl. Math. 60(1), 67–112 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  33. Stein, E.M.: Singular Integrals and Differentiability Properties of Functions. Princeton Mathematical Series, No. 30. Princeton University Press, Princeton (1970)

  34. Struwe, M.: A flow approach to Nirenberg’s problem. Duke Math. J. 128(1), 19–64 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  35. Struwe, M.: Quantization for a fourth order equation with critical exponential growth. Math. Z. 256, 397–424 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  36. Wei, J., Xu, X.: Classification of solutions of higher order conformally invariant equations. Math. Ann. 313, 207–228 (1999)

    Article  MATH  MathSciNet  Google Scholar 

  37. Wei, J., Ye, D.: Nonradial solutions for a conformally invariant fourth order equation in \({\mathbb{R}}^4\). Calc. Var. Partial Differ. Equ. 32(3), 373–386 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  38. Xu, X.: Uniqueness and non-existence theorems for conformally invariant equations. J. Funct. Anal. 222(1), 1–28 (2005)

    Article  MATH  MathSciNet  Google Scholar 

Download references

Acknowledgments

We would like to thank anonymous referee for his/her suggestions and comments. A. Maalaoui and L. Martinazzi were supported in part by the Swiss National Science Foundation. J. Xiong was supported in part by the First Class Postdoctoral Science Foundation of China (No. 2012M520002). Part of the work was done while A. Maalaoui and L. Martinazzi were attending the research program “Conformal Geometry and Geometric PDE’s” at CRM Barcelona.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Luca Martinazzi.

Additional information

Communicated by A. Malchiodi.

Appendix A: The fractional Laplacian in \({\mathbb {R}}^{n}\)

Appendix A: The fractional Laplacian in \({\mathbb {R}}^{n}\)

If \(\sigma \in (0,1)\) and \(u\) belongs to the Schwarz space \(\mathcal S\) of rapidly decreasing smooth functions in \({\mathbb {R}}^{n}\), then \((-\Delta )^\sigma u\) is defined by

$$\begin{aligned} \widehat{(-\Delta )^\sigma u}(\xi )=|\xi |^{2\sigma }{\hat{u}}(\xi ), \end{aligned}$$

where

$$\begin{aligned} {\hat{f}}(\xi )=\mathcal {F}(f)(\xi ):=\frac{1}{(2\pi )^{n/2}}\int _{{\mathbb {R}}^{n}}f(x)e^{- ix\cdot \xi }\,dx \end{aligned}$$

denotes the Fourier transform. An equivalent definition is the following:

$$\begin{aligned} (-\Delta )^\sigma u(x):=C_{n,\sigma } P.V.\int _{{\mathbb {R}}^{n}}\frac{u(x)-u(y)}{|x-y|^{n+2\sigma }}\,dy, \end{aligned}$$
(33)

where the right-hand side is defined in the sense of the principal value. One can see that (33) makes sense for classes of functions larger than the Schwarz space, for instance for functions in \(C^{2\sigma +\alpha }_{{{\mathrm{loc}}}}({\mathbb {R}}^{n})\cap L_{\sigma }({\mathbb {R}}^{n})\) for some \(\alpha >0\), where

$$\begin{aligned} L_{\sigma }({\mathbb {R}}^{n}):=\left\{ u\in L^1_{{{\mathrm{loc}}}}({\mathbb {R}}^{n}):\int _{{\mathbb {R}}^{n}}\frac{|u(x)|}{1+|x|^{n+2\sigma }}\,dx< \infty \right\} , \end{aligned}$$

and \(C^{2\sigma +\alpha }_{{{\mathrm{loc}}}}({\mathbb {R}}^{n}):=C^{0,2\sigma +\alpha }_{{{\mathrm{loc}}}}({\mathbb {R}}^{n})\) for \(2\sigma +\alpha \le 1\) and \(C^{2\sigma +\alpha }_{{{\mathrm{loc}}}}({\mathbb {R}}^{n}):=C^{1,2\sigma -1+\alpha }_{{{\mathrm{loc}}}}({\mathbb {R}}^{n})\) for \(2\sigma +\alpha >1\). We denote \(\Vert u\Vert _{L_{\sigma }({\mathbb {R}}^{n})}=\int _{{\mathbb {R}}^{n}}\frac{|u(x)|}{1+|x|^{n+2\sigma }}dx\). Observing that

$$\begin{aligned} \sup _{{\mathbb {R}}^{n}}(1+|x|^{n+2\sigma })|(-\Delta )^\sigma \varphi (x)|< +\infty \quad \text {for }\varphi \in {\mathcal {S}}, \end{aligned}$$
(34)

and that \((-\Delta )^{\sigma }:{\mathcal {S}}\rightarrow {\mathcal {S}}\) is symmetric, as shown in [32], one can define \((-\Delta )^{\sigma } u\) by duality for functions \(u\in L_{\sigma }({\mathbb {R}}^{n})\) as a tempered distribution via the relation

$$\begin{aligned} \langle (-\Delta )^{\sigma } u,\varphi \rangle =\int _{{\mathbb {R}}^{n}} u(x) (-\Delta )^{\sigma } \varphi (x)\,dx\quad \text {for every }\varphi \in {\mathcal {S}}. \end{aligned}$$
(35)

That for \(u\in C^{2\sigma +\alpha }_{{{\mathrm{loc}}}}({\mathbb {R}}^{n})\cap L_\sigma ({\mathbb {R}}^{n})\) the definitions (33) and (35) coincide is shown in [32, Proposition 2.4].

The following lemma is well-known, but we include a proof here for convenience and completeness.

Lemma 21

The function \(K(x):=\frac{1}{2\pi ^2|x|^2}\) is a fundamental solution of \((-\Delta )^\frac{1}{2}\) in \({\mathbb {R}}^{3}\) in the sense that for every \(f\in L^1({\mathbb {R}}^{3})\) we have \(K*f\in L_{1/2}({\mathbb {R}}^{3})\) and

$$\begin{aligned} (-\Delta )^\frac{1}{2} (K*f)=f, \end{aligned}$$
(36)

in the sense of (35).

Proof

First of all, it follows easily from Theorem 5.9 in [16] that (36) holds if we assume \(f\in {\mathcal C}^\infty _c({\mathbb {R}}^{3})\).

Secondly, we notice that, if \(f\in L^{1}\) then \(K*f\in L_{1/2}({\mathbb {R}}^{3})\). Indeed,

$$\begin{aligned} K(x)=\frac{1}{2\pi ^2|x|^{2}}\chi _{B_{1}} + \frac{1}{2\pi ^2|x|^{2}}\chi _{{\mathbb {R}}^{3}\setminus B_{1}}=: K_1(x)+K_2(x), \end{aligned}$$

and \(K_{1}\in L^{\frac{3}{2}-\varepsilon }({\mathbb {R}}^{3})\), \(K_{2}\in L^{\frac{3}{2}+\varepsilon }({\mathbb {R}}^{3})\) for any \(\varepsilon >0\). Hence, by Young’s inequality

$$\begin{aligned} K*f\in L^{\frac{3}{2}-\varepsilon } ({\mathbb {R}}^{3})+L^{\frac{3}{2}+ \varepsilon }({\mathbb {R}}^{3})\subset L_{1/2}({\mathbb {R}}^{3}), \end{aligned}$$

where the last inclusion follows from Hölder’s inequality.

Lastly, if \(f\in L^1({\mathbb {R}}^{3})\) we take a sequence \((f_k)\subset C^\infty _c({\mathbb {R}}^{3})\) with \(f_k\rightarrow f\) in \(L^1({\mathbb {R}}^{3})\). Then for every \(\varphi \in {\mathcal S}\) we have

$$\begin{aligned} (I)_k:=\langle (-\Delta )^\frac{1}{2}(K*f_k),\varphi \rangle =\langle f_k,\varphi \rangle \rightarrow \langle f,\varphi \rangle \quad \text {as }k\rightarrow \infty . \end{aligned}$$

Since \(K*f=K_{1}*f+K_{2}*f\in L^{\frac{3}{2}-\varepsilon }+L^{\frac{3}{2}+\varepsilon }\), we have \(K_{1}*f_{k}\rightarrow K_{1}*f\) in \(L^{\frac{3}{2}-\varepsilon }\), and thus, in \(L_{1/2}({\mathbb {R}}^{3})\) by Hölder’s inequality. Similarly, \(K_{2}*f_{k}\rightarrow K_{2}*f\) in \(L_{1/2}({\mathbb {R}}^{3})\), and \(K*f_k\rightarrow K*f\) in \(L_{1/2}({\mathbb {R}}^{3})\). By (34), we find

$$\begin{aligned} (I)_k=\langle K*f_k,(-\Delta )^\frac{1}{2}\varphi \rangle \rightarrow \langle K*f,(-\Delta )^\frac{1}{2}\varphi \rangle . \end{aligned}$$

Hence, we conclude that \((-\Delta )^\frac{1}{2} (K*f)= f\) in the sense of (35). \(\square \)

1.1 A.1 Schauder estimates

The following proposition should be well-known, but we include here an elementary proof of the estimate (37) which was used in Sect. 4.

Let \(\Omega \) be a domain in \({\mathbb {R}}^{n}\) and \(f\in L^1(\Omega )\). We say that \(u\in L_{\sigma }({\mathbb {R}}^{n})\) is a solution of \((-\Delta )^\sigma u=f\) in \(\Omega \) if

$$\begin{aligned} \int _{{\mathbb {R}}^{n}} u\, (-\Delta )^\sigma \varphi \,dx=\int _{{\mathbb {R}}^{n}} f\, \varphi \,dx\quad \text {for every }\varphi \in C_c^{\infty }(\Omega ). \end{aligned}$$

Proposition 22

If \(u\in L_{\sigma }({\mathbb {R}}^{n})\) for some \(\sigma \in (0,1)\) and \((-\Delta )^\sigma u=0\) in \(B_{2r}\) for some \(r>0\), then \(u\in C^\infty (B_{2r})\). Moreover, for every \(k\in {\mathbb {N}}\) the following estimate holds:

$$\begin{aligned} \Vert \nabla ^k u\Vert _{L^\infty (B_r)}\le \frac{C_{n,\sigma ,k}}{r^{k}} \left( r^{2\sigma }\int _{{\mathbb {R}}^{n}\setminus B_{2r}}\frac{|u(x)|}{|x|^{n+2\sigma }}\,dx + \frac{\Vert u\Vert _{L^1(B_{2r})}}{r^n}\right) , \end{aligned}$$
(37)

where \(C_{n,\sigma ,k}\) is a positive constant depending only on \(n,\sigma \) and \(k\).

Notice that the right-hand sides of (37) are equivalent to \(C_{n,\sigma ,k,\alpha ,r}\Vert u\Vert _{L_\sigma }\) for every fixed \(r\) and, although this term is more compact, it is not scale invariant with respect to \(r\).

For the proof of this proposition we will use a couple of results from [32]. Following the notations of Silvestre [32] we set \(\Phi (x)= \frac{C_{n,\sigma }}{|x|^{n-2\sigma }}\) the fundamental solution of \((-\Delta )^{\sigma }\) and we construct \(\Gamma \) from \(\Phi \) by modifying \(\Phi \) only in \(B_1\) so that \(\Gamma \in C^{\infty }({\mathbb {R}}^{n})\). Via a rescaling, we consider for \(\lambda >0\) the function

$$\begin{aligned} \Gamma _{\lambda }(x)=\frac{1}{\lambda ^{n-2\sigma }}\Gamma \left( \frac{x}{\lambda }\right) , \end{aligned}$$

and also define \(\gamma _{\lambda }(x):=(-\Delta )^{\sigma } \Gamma _{\lambda }(x)\). Notice that

$$\begin{aligned} \gamma _\lambda (x)=\frac{1}{\lambda ^n}\gamma _1\left( \frac{x}{\lambda }\right) . \end{aligned}$$
(38)

By [32, Prop. 2.7] \(\gamma _\lambda \in C^\infty ({\mathbb {R}}^{n})\). We will need the following two results:

Proposition 23

([32], Prop. 2.12) For \(|x|>\lambda \), we have

$$\begin{aligned} \gamma _{\lambda }(x)=\int _{B_{\lambda }(0)}\frac{\Phi (y)-\Gamma _{\lambda }(y)}{|x-y|^{n+2\sigma }}\,dy. \end{aligned}$$
(39)

Proposition 24

([32], Prop. 2.22) Assume that \(u\in L_{\sigma }({\mathbb {R}}^{n})\) such that \((-\Delta )^{\sigma }u=0\) in \(\Omega \subset {\mathbb {R}}^{n}\). Then \(u\in C^0(\Omega )\) and \(u(x)=u*\gamma _{\lambda }(x)\) for every \(x\in \Omega \) and \(\lambda \in (0,\mathrm{{dist}}(x,\partial \Omega ))\).

We remark that, although our definition of \(\Gamma \) (hence of \(\Gamma _\lambda \) and \(\gamma _\lambda \)) is slightly different from the one in [32], the proofs of the above propositions go through with almost no change.

Proof of Proposition 22

The proof uses Proposition 24 and a standard convolution argument. For every \(k\in {\mathbb {N}}\cup \{0\}\), we have from Proposition 24 that \(\nabla ^k u=u*\nabla ^k \gamma _\lambda \) (we use the notation that \(\nabla ^0\) is the identity operator) in \(B_r\) for \(\lambda = r/2\). Hence, for \(x\in B_r\),

$$\begin{aligned} |\nabla ^k u(x)|\le \int _{{\mathbb {R}}^{n}\setminus B_{2r}}|u(y)| |\nabla ^k\gamma _{\lambda }(x-y)|\,dy+\int _{B_{2r}}|u(y)| |\nabla ^k\gamma _{\lambda }(x-y)|\,dy=:I+II. \end{aligned}$$

Notice that

$$\begin{aligned} \frac{1}{|x-y-z|^{n+2\sigma +k}}\le \frac{1}{(|y|-r-\lambda )^{n+2\sigma +k}}\le \frac{C_{n,\sigma ,k}}{|y|^{n+2\sigma +k}}, \quad |y|>2r, |x|<r,|z|<\lambda = \frac{r}{2}. \end{aligned}$$

Then we have, by differentiating (39),

$$\begin{aligned} |\nabla ^k\gamma _\lambda (x-y)|\le C_{n,\sigma ,k}\int _{B_\lambda }\frac{|\Phi (z)-\Gamma _\lambda (z)|}{|x-y-z|^{n+2\sigma +k}}dz\le \frac{C_{n,\sigma ,k} \lambda ^{2\sigma }}{|y|^{n+2\sigma +k}},\quad |y|>2r, |x|<r,\lambda = \frac{r}{2}. \end{aligned}$$

It follows that

$$\begin{aligned} I\le C_{n,\sigma } r^{2\sigma -k} \int _{{\mathbb {R}}^{n}\setminus B_{2r}}\frac{|u(y)|}{|y|^{n+2\sigma }}\,dy. \end{aligned}$$

As for II, notice that (38) implies \(\nabla ^k \gamma _\lambda =\lambda ^{-n-k}\nabla ^k\gamma _1\big (\frac{x}{\lambda }\big )\), from which one bounds

$$\begin{aligned} II\le C_{n,\sigma ,k}\Vert \nabla ^k\gamma _{r/2}\Vert _{L^\infty }\int _{B_{2r}} |u(y)|\,dy \le \frac{C_{n,\sigma ,k}}{r^{n+k}} \Vert u\Vert _{L^1(B_{2r})}. \end{aligned}$$

The proof of (37) is completed. \(\square \)

Corollary 25

Suppose \(u\in L_\sigma ({\mathbb {R}}^{n})\) for some \(\sigma \in (0,1)\) and \((-\Delta )^\sigma u=f\) in \(B_2\) for some \(f\in C^{k,\alpha }(B_2)\), where \(\alpha \in (0,1), k\in {\mathbb {N}}\cup \{0\}\) and \(\alpha +2\sigma \) is not an integer. Then \(u\in C^{k,\alpha +2\sigma }(B_1)\) \((C^{k,\beta }(B_1)= C^{k+1, \beta -1}(B_1)\) if \(\beta >1).\) Moreover,

$$\begin{aligned} \Vert u\Vert _{C^{k,\alpha +2\sigma }(B_1)}\le C_{n,\sigma ,k}\left( \int _{{\mathbb {R}}^{n}}\frac{|u(x)|}{1+|x|^{n+2\sigma }}\,dx+\Vert f\Vert _{C^{k,\alpha }(B_2)}\right) , \end{aligned}$$

where \(C_{n,\sigma ,k}\) is a positive constant depending only on \(n,\sigma \) and \(k\).

Proof

This can be proven similarly as in Proposition 2.8 of [32], by using the estimates in Proposition 22. \(\square \)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Jin, T., Maalaoui, A., Martinazzi, L. et al. Existence and asymptotics for solutions of a non-local Q-curvature equation in dimension three. Calc. Var. 52, 469–488 (2015). https://doi.org/10.1007/s00526-014-0718-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00526-014-0718-9

Mathematics Subject Classification

Navigation