Skip to main content
Log in

Global dynamics above the ground state energy for the cubic NLS equation in 3D

  • Published:
Calculus of Variations and Partial Differential Equations Aims and scope Submit manuscript

Abstract

We extend the result in Nakanishi and Schlag (J Differ Equ 250:2299–2333, 2011) on the nonlinear Klein–Gordon equation to the nonlinear Schrödinger equation with the focusing cubic nonlinearity in three dimensions, for radial data of energy at most slightly above that of the ground state. We prove that the initial data set splits into nine nonempty, pairwise disjoint regions which are characterized by the distinct behaviors of the solution for large time: blow-up, scattering to 0, or scattering to the family of ground states generated by the phase and scaling freedom. Solutions of this latter type form a smooth center-stable manifold, which contains the ground states and separates the phase space locally into two connected regions exhibiting blow-up and scattering to 0, respectively. The special solutions found by Duyckaerts and Roudenko (Rev Mater Iberoam 26(1):1–56, 2010), following the seminal work on threshold solutions by Duyckaerts and Merle (Funct Anal 18(6):1787–1840, 2009), appear here as the unique one-dimensional unstable/stable manifolds emanating from the ground states. In analogy with Nakanishi and Schlag (J Differ Equ 250:2299–2333, 2011), the proof combines the hyperbolic dynamics near the ground states with the variational structure away from them. The main technical ingredient in the proof is a “one-pass” theorem which precludes “almost homoclinic orbits”, i.e., those solutions starting in, then moving away from, and finally returning to, a small neighborhood of the ground states. The main new difficulty compared with the Klein–Gordon case is the lack of finite propagation speed. We need the radial Sobolev inequality for the error estimate in the virial argument. Another major difference between Nakanishi and Schlag (J Differ Equ 250:2299–2333, 2011) and this paper is the need to control two modulation parameters.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Bahouri H., Gérard P.: High frequency approximation of solutions to critical nonlinear wave equations. Am. J. Math. 121(1), 131–175 (1999)

    Article  MATH  Google Scholar 

  2. Bates, P.W., Jones, C.K.R.T.: Invariant manifolds for semilinear partial differential equations. In: Dynamics Reported, vol.1, pp. 1–38. Dynam. Report. Ser. Dynam. Systems Appl., 2, Wiley, Chichester (1989)

  3. Beceanu M.: A centre-stable manifold for the focussing cubic NLS in \({\mathbb {R}^{1+3}}\) . Commun. Math. Phys. 280(1), 145–205 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  4. Beceanu, M.: New estimates for a time-dependent Schrödinger equation (preprint 2009), to appear in Duke Math. J.

  5. Beceanu, M.: A critical centre-stable manifold for the Schroedinger equation in three dimensions (preprint 2009), to appear in Commun. Pure Appl. Math.

  6. Berestycki H., Cazenave T.: Instabilité des états stationnaires dans les équations de Schrödinger et de Klein–Gordon non linéaires. C. R. Acad. Sci. Paris I Math. 293(9), 489–492 (1981)

    MathSciNet  MATH  Google Scholar 

  7. Berestycki H., Lions P.-L.: Nonlinear scalar field equations. I. Existence of a ground state. Arch. Ration. Mech. Anal. 82(4), 313–345 (1983)

    MathSciNet  MATH  Google Scholar 

  8. Bourgain J., Wang W.: Construction of blowup solutions for the nonlinear Schrödinger equation with critical nonlinearity. Ann. Scuola Norm. Sup. Pisa Cl. Sci. (4) 25(1-2), 197–215 (1997)

    MathSciNet  MATH  Google Scholar 

  9. Buslaev, V.S., Perelman, G.S.: Scattering for the nonlinear Schrödinger equation: states that are close to a soliton. (Russian) Algebra i Analiz. 4(6), 63–102 (1992); translation in St. Petersburg Math. J. 4(6), 1111–1142 (1993)

  10. Buslaev, V.S., Perelman, G.S.: On the stability of solitary waves for nonlinear Schrödinger equations. In: Nonlinear Evolution Equations. American Mathematical Society Translations: Series 2, vol. 164, pp. 75–98. American Mathematical Society, Providence, RI (1995)

  11. Cazenave, T.: Semilinear Schrödinger equations. In: Courant Lecture Notes in Mathematics, vol. 10. New York University, Courant Institute of Mathematical Sciences, New York; American Mathematical Society, Providence, RI (2003)

  12. Cazenave T., Lions P.-L.: Orbital stability of standing waves for some nonlinear Schrödinger equations. Commun. Math. Phys. 85(4), 549–561 (1982)

    Article  MathSciNet  MATH  Google Scholar 

  13. Coffman C.: Uniqueness of the ground state solution for Δuuu 3 =  0 and a variational characterization of other solutions. Arch. Ration. Mech. Anal. 46, 81–95 (1972)

    Article  MathSciNet  MATH  Google Scholar 

  14. Cuccagna S.: Stabilization of solutions to nonlinear Schrödinger equations. Commun. Pure Appl. Math. 54(9), 1110–1145 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  15. Cuccagna S., Mizumachi T.: On asymptotic stability in energy space of ground states for nonlinear Schrödinger equations. Commun. Math. Phys. 284(1), 51–77 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  16. Demanet L., Schlag W.: Numerical verification of a gap condition for a linearized nonlinear Schrödinger equation. Nonlinearity 19(4), 829–852 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  17. Duyckaerts, T., Merle, F.: Dynamic of threshold solutions for energy-critical NLS. Geom. Funct. Anal. 18(6), 1787–1840 (2009); Dynamics of threshold solutions for energy-critical wave equation. International Mathematics Research Papers, IMRP (2008)

    Google Scholar 

  18. Duykaerts T., Roudenko S.: Thresholdsolutions for the focusing 3D cubic Schrödinger equation. Rev. Mater. Iberoam. 26(1), 1–56 (2010)

    Article  Google Scholar 

  19. Duyckaerts T., Holmer J., Roudenko S.: Scattering for the non-radial 3D cubic nonlinear Schrödinger equation. Math. Res. Lett. 15(6), 1233–1250 (2008)

    MathSciNet  MATH  Google Scholar 

  20. Erdogan B., Schlag W.: Dispersive estimates for Schrödinger operators in the presence of a resonance and/or an eigenvalue at zero energy in dimension three. II. J. Anal. Math. 99, 199–248 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  21. Fibich G., Merle F., Raphaël P.: Proof of a spectral property related to the singularity formation for the L 2 critical nonlinear Schrödinger equation. Phys. D 220(1), 1–13 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  22. Gesztesy F., Jones C.K.R.T., Latushkin Y., Stanislavova M.: A spectral mapping theorem and invariant manifolds for nonlinear Schrödinger equations. Indiana Univ. Math. J. 49(1), 221–243 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  23. Ginibre J., Velo G.: On a class of nonlinear Schrödinger equation. I. The Cauchy problems; II. Scattering theory, general case. J. Funct. Anal. 32(1-32), 33–71 (1979)

    Article  MathSciNet  MATH  Google Scholar 

  24. Ginibre J., Velo G.: Scattering theory in the energy space for a class of nonlinear Schrödinger equations. J. Math. Pures Appl. (9) 64(4), 363–401 (1985)

    MathSciNet  MATH  Google Scholar 

  25. Glassey R.T.: On the blowing up of solutions to the Cauchy problem for nonlinear Schrödinger equation. J. Math. Phys. 18(9), 1794–1797 (1977)

    Article  MathSciNet  MATH  Google Scholar 

  26. Grillakis M.: Linearized instability for nonlinear Schrödinger and Klein–Gordon equations. Commun. Pure Appl. Math. 41, 747–774 (1988)

    Article  MathSciNet  MATH  Google Scholar 

  27. Grillakis M.: Analysis of the linearization around a critical point of an infinite dimensional Hamiltonian system. Commun. Pure Appl. Math. 43, 299–333 (1990)

    Article  MathSciNet  MATH  Google Scholar 

  28. Grillakis M., Shatah J., Strauss W.: Stability theory of solitary waves in the presence of symmetry. I. J. Funct. Anal. 74(1), 160–197 (1987)

    Article  MathSciNet  MATH  Google Scholar 

  29. Grillakis M., Shatah J., Strauss W.: Stability theory of solitary waves in the presence of symmetry. II. J. Funct. Anal. 94(2), 308–348 (1990)

    Article  MathSciNet  MATH  Google Scholar 

  30. Hirsch M.W., Pugh C.C., Shub M.: Invariant manifolds. In: Lecture Notes in Mathematics, vol. 583. Springer, Berlin (1977)

    Google Scholar 

  31. Holmer J., Roudenko S.: A sharp condition for scattering of the radial 3D cubic nonlinear Schrödinger equation. Commun. Math. Phys. 282(2), 435–467 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  32. Hundertmark D., Lee Y.-R.: Exponential decay of eigenfunctions and generalized eigenfunctions of a non-self-adjoint matrix Schrödinger operator related to NLS. Bull. Lond. Math. Soc. 39(5), 709–720 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  33. Ibrahim, S., Masmoudi, N., Nakanishi, K.: Scattering threshold for the focusing nonlinear Klein–Gordon equation. to appear in Anal. PDE

  34. Keel M., Tao T.: Endpoint Strichartz estimates. Am. J. Math. 120, 955–980 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  35. Kenig C., Merle F.: Global well-posedness, scattering, and blow-up for the energy-critical focusing nonlinear Schrödinger equation in the radial case. Invent. Math. 166(3), 645–675 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  36. Kenig C., Merle F.: Global well-posedness, scattering and blow-up for the energy-critical focusing non-linear wave equation. Acta Math. 201(2), 147–212 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  37. Keraani S.: On the defect of compactness for the Strichartz estimates of the Schrödinger equation. J. Differ. Equ. 175, 353–392 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  38. Krieger J., Schlag W.: Stable manifolds for all monic supercritical focusing nonlinear Schrödinger equations in one dimension. J. Am. Math. Soc. 19(4), 815–920 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  39. Krieger J., Schlag W.: Non-generic blow-up solutions for the critical focusing NLS in 1-D. J. Eur. Math. Soc. (JEMS) 11(1), 1–125 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  40. Kwong M.: Uniqueness of positive solutions of Δu + u + u p = 0 in \({\mathbb {R}^{n}}\) . Arch. Ration. Mech. Anal. 105(3), 243–266 (1989)

    Article  MathSciNet  MATH  Google Scholar 

  41. Marzuola J., Simpson G.: Spectral analysis for matrix Hamiltonian operators. Nonlinearity 24, 389–429 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  42. Merle F.: Determination of blow-up solutions with minimal mass for nonlinear Schrödinger equations with critical power. Duke Math. J. 69(2), 427–454 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  43. Merle, F., Raphael, P.: On a sharp lower bound on the blow-up rate for the L 2L2 critical nonlinear Schrödinger equation. J. Am. Math. Soc. 191, 37–90 (2006). The blow-up dynamic and upper bound on the blow-up rate for critical nonlinear Schrödinger equation. Ann. Math. 2 161(1), 157–222 (2005); On universality of blow-up profile for L 2L2 critical nonlinear Schrödinger equation. Invent. Math. 156(3), 565–672 (2004)

    Google Scholar 

  44. Merle F., Vega L.: Compactness at blow-up time for L 2 solutions of the critical nonlinear Schrödinger equation in 2D. Intern. Math. Res. Notice 8, 399–425 (1998)

    Article  MathSciNet  Google Scholar 

  45. Merle F., Raphael P., Szeftel J.: Stable self-similar blow-up dynamics for slightly L 2 super-critical NLS equations. Geom. Funct. Anal. 20(4), 1028–1071 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  46. Merle, F., Raphael, P., Szeftel, J.: The instability of Bourgain–Wang solutions for the L 2 critical NLS, preprint, arXiv:1010.5168

  47. Nakanishi K., Schlag W.: Global dynamics above the ground state energy for the focusing nonlinear Klein–Gordon equation. J. Differ. Equ. 250, 2299–2333 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  48. Ogawa T., Tsutsumi Y.: Blow-Up of H 1, solution for the Nonlinear Schrödinger Equation. J. Differ. Equ. 92, 317–330 (1991)

    Article  MathSciNet  MATH  Google Scholar 

  49. Perelman G.: On the formation of singularities in solutions of the critical nonlinear Schrödinger equation. Ann. Henri Poincaré 2(4), 605–673 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  50. Pillet C.A., Wayne C.E.: Invariant manifolds for a class of dispersive, Hamiltonian, partial differential equations. J. Differ. Equ. 141(2), 310–326 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  51. Schlag W.: Stable manifolds for an orbitally unstable nonlinear Schrödinger equation. Ann. Math. (2) 169(1), 139–227 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  52. Soffer A., Weinstein M.: Multichannel nonlinear scattering for nonintegrable equations. Commun. Math. Phys. 133, 119–146 (1990)

    Article  MathSciNet  MATH  Google Scholar 

  53. Soffer A., Weinstein M.: Multichannel nonlinear scattering, II. The case of anisotropic potentials and data. J. Differ. Equ. 98, 376–390 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  54. Strauss W.A.: Existence of solitary waves in higher dimensions. Commun. Math. Phys. 55(2), 149–162 (1977)

    Article  MATH  Google Scholar 

  55. Strauss, W.A.: Nonlinear wave equations. In: CBMS Regional Conference Series in Mathematics, vol. 73. Published for the Conference Board of the Mathematical Sciences, Washington, DC, by the American Mathematical Society, Providence, RI (1989)

  56. Sulem C., Sulem P-L.: The Nonlinear Schrödinger Equation, Self-focusing and Wave Collapse. Applied Mathematical Sciences, vol. 139. Springer, New York (1999)

    Google Scholar 

  57. Tao, T.: Nonlinear dispersive equations: local and global analysis. In: CBMS Regional Conference Series in Mathematics, vol. 106. American Mathematical Society, Providence, RI (2006)

  58. Tsai T.P., Yau H.T.: Stable directions for excited states of nonlinear Schroedinger equations. Commun. Partial Differ. Equ. 27(11&12), 2363–2402 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  59. Vanderbauwhede, A.: Centre manifolds, normal forms and elementary bifurcations. In: Dynamics Reported, vol. 2, pp. 89–169. Dynam. Report. Ser. Dynam. Systems Appl., 2, Wiley, Chichester (1989)

  60. Weinstein M.: Modulational stability of ground states of nonlinear Schrödinger equations. SIAM J. Math. Anal. 16(3), 472–491 (1985)

    Article  MathSciNet  MATH  Google Scholar 

  61. Weinstein M.: Lyapunov stability of ground states of nonlinear dispersive evolution equations. Commun. Pure Appl. Math. 39(1), 51–67 (1986)

    Article  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to W. Schlag.

Additional information

Communicated by M. Struwe.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Nakanishi, K., Schlag, W. Global dynamics above the ground state energy for the cubic NLS equation in 3D. Calc. Var. 44, 1–45 (2012). https://doi.org/10.1007/s00526-011-0424-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00526-011-0424-9

Mathematics Subject Classification (2000)

Navigation