Skip to main content
Log in

Quantitative Derivation and Scattering of the 3D Cubic NLS in the Energy Space

  • Manuscript
  • Published:
Annals of PDE Aims and scope Submit manuscript

Abstract

We consider the derivation of the defocusing cubic nonlinear Schrödinger equation (NLS) on \({\mathbb {R}}^{3}\) from quantum N-body dynamics. We reformat the hierarchy approach with Klainerman-Machedon theory and prove a bi-scattering theorem for the NLS to obtain convergence rate estimates under \(H^{1}\) regularity. The \(H^{1}\) convergence rate estimate we obtain is almost optimal for \(H^{1}\) datum, and immediately improves if we have any extra regularity on the limiting initial one-particle state.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Notes

  1. As usual, in the notation, we do not distinguish the kernel and the operator it defines.

  2. The gap could be less severe in 1D and 2D as the corresponding critical regularity drops.

  3. See [67] for some locally half-circle shaped or paralleled-tube shaped examples.

  4. One can use either (1.7) or (1.8) as (b).

  5. Condition (c) implies \(\Gamma _{\infty }(0)\in H_{E_{0}}^{1}\) which implies \( d\mu _{0}\) is supported in the subset of in which \(\left\| \phi \right\| _{H^{1}({\mathbb {R}}^{3})}\leqslant E_{0} \). Hence \(S_{t}\phi \) is well-defined inside the \(d\mu _{0}\) integral.

  6. The method does yield the optimal \(N^{-1}\) rate when \(\beta =0\) but one needs to change (1.1).

  7. We emphasize the “in N” aspect of the optimality here because the best “in t” growth rate is unknown. But a rate better than exponential growth has been proven to be possible in related scenarios with the second-order correction – see [17, 31, 41,42,43,44, 58, 59] for examples.

  8. See also [1] for the 1D defocusing cubic case around the same time.

  9. Private communication in 2011.

  10. This is certainly only a fraction of all possible references as the Fock space approach is also such a vast and sophisticated subject now. Please also see the references within them and the newer ones online.

  11. Obtaining the optimal \(N^{-\beta }\) rate using the Fock space approach assuming \(H^{4}\) has been done in the much harder \(\beta =1\) case. See [7].

  12. Intereseted readers can see [29] for a detailed handling of this error term.

  13. The proof shows that \(\delta \lesssim \langle C_1 \rangle ^{-1/3}\) suffices

  14. For more estimates of this type, see [16, 18, 39, 40, 52].

References

  1. Adami, R., Golse, F., Teta, A.: Rigorous derivation of the cubic NLS in dimension one. J. Stat. Phys. 127, 1194–1220 (2007)

    ADS  MathSciNet  MATH  Google Scholar 

  2. Anderson, M.H., Ensher, J.R., Matthews, M.R., Wieman, C.E., Cornell, E.A.: Observation of Bose-Einstein Condensation in a Dilute Atomic Vapor. Science 269, 198–201 (1995)

    ADS  Google Scholar 

  3. Bourgain, J.: Scattering in the energy space and below for 3D NLS. J. Anal. Math. 75, 267–297 (1998)

    MathSciNet  MATH  Google Scholar 

  4. Bourgain, J.: New Global Well-posedness Results for Non-linear Schrödinger Equations, AMS Publications, (1999)

  5. Benedikter, N., Oliveira, G., Schlein, B.: Quantitative Derivation of the Gross-Pitaevskii Equation. Comm. Pure. Appl. Math. 68, 1399–1482 (2015)

    MathSciNet  MATH  Google Scholar 

  6. Boccato, C., Cenatiempo, S., Schlein, B.: Quantum Many-body Fluctuations around Nonlinear Schrödinger Dynamics. Ann. Henri Poincaré 18, 113–191 (2017)

    ADS  MathSciNet  MATH  Google Scholar 

  7. Brennecke, C., Schlein, B.: Gross-Pitaevskii Dynamics for Bose-Einstein Condensates. Analysis & PDE 12, 1513–1596 (2019)

    MathSciNet  MATH  Google Scholar 

  8. Chen, T., Hainzl, C., Pavlović, N., Seiringer, R.: Unconditional Uniqueness for the Cubic Gross-Pitaevskii Hierarchy via Quantum de Finetti. Commun. Pure Appl. Math. 68, 1845–1884 (2015)

    MathSciNet  MATH  Google Scholar 

  9. Chen, T., Pavlović, N.: On the Cauchy Problem for Focusing and Defocusing Gross-Pitaevskii Hierarchies. Discrete Contin. Dyn. Syst. 27, 715–739 (2010)

    MathSciNet  MATH  Google Scholar 

  10. Chen, T., Pavlović, N.: The Quintic NLS as the Mean Field Limit of a Boson Gas with Three-Body Interactions. J. Funct. Anal. 260, 959–997 (2011)

    MathSciNet  MATH  Google Scholar 

  11. Chen, T., Pavlović, N.: A new proof of existence of solutions for focusing and defocusing Gross-Pitaevskii hierarchies. Proc. Amer. Math. Soc. 141, 279–293 (2013)

    MathSciNet  MATH  Google Scholar 

  12. Chen, T., Pavlović, N.: Higher order energy conservation and global wellposedness of solutions for Gross-Pitaevskii hierarchies. Commun. PDE 39, 1597–1634 (2014)

    MATH  Google Scholar 

  13. Chen, T., Pavlović, N.: Derivation of the cubic NLS and Gross-Pitaevskii hierarchy from manybody dynamics in \(d=3\) based on spacetime norms. Ann. H. Poincare 15, 543–588 (2014)

    MathSciNet  MATH  Google Scholar 

  14. Chen, T., Taliaferro, K.: Derivation in Strong Topology and Global Well-posedness of Solutions to the Gross-Pitaevskii Hierarchy. Commun. PDE 39, 1658–1693 (2014)

    MathSciNet  MATH  Google Scholar 

  15. Chen, T., Pavlović, N., Tzirakis, N.: Energy Conservation and Blowup of Solutions for Focusing Gross-Pitaevskii Hierarchies. Ann. I. H. Poincaré 27, 1271–1290 (2010)

    ADS  MathSciNet  MATH  Google Scholar 

  16. Chen, X.: Classical Proofs Of Kato Type Smoothing Estimates for The Schrödinger Equation with Quadratic Potential in \( R^{n+1}\) with Application. Differential and Integral Equations 24, 209–230 (2011)

    MathSciNet  MATH  Google Scholar 

  17. Chen, X.: Second Order Corrections to Mean Field Evolution for Weakly Interacting Bosons in the Case of Three-body Interactions. Arch. Rational Mech. Anal. 203, 455–497 (2012)

    ADS  MathSciNet  MATH  Google Scholar 

  18. Chen, X.: Collapsing Estimates and the Rigorous Derivation of the 2d Cubic Nonlinear Schrödinger Equation with Anisotropic Switchable Quadratic Traps. J. Math. Pures Appl. 98, 450–478 (2012)

    MathSciNet  MATH  Google Scholar 

  19. Chen, X.: On the Rigorous Derivation of the 3D Cubic Nonlinear Schrödinger Equation with A Quadratic Trap. Arch. Rational Mech. Anal. 210, 365–408 (2013)

    ADS  MathSciNet  MATH  Google Scholar 

  20. Chen, X., Holmer, J.: On the Rigorous Derivation of the 2D Cubic Nonlinear Schrödinger Equation from 3D Quantum Many-Body Dynamics. Arch. Rational Mech. Anal. 210, 909–954 (2013)

    ADS  MathSciNet  MATH  Google Scholar 

  21. Chen, X., Holmer, J.: On the Klainerman-Machedon Conjecture of the Quantum BBGKY Hierarchy with Self-interaction. J. Eur. Math. Soc. (JEMS) 18, 1161–1200 (2016)

    MathSciNet  MATH  Google Scholar 

  22. Chen, X., Holmer, J.: Focusing Quantum Many-body Dynamics: The Rigorous Derivation of the 1D Focusing Cubic Nonlinear Schrödinger Equation. Arch. Rational Mech. Anal. 221, 631–676 (2016)

    ADS  MathSciNet  MATH  Google Scholar 

  23. Chen, X., Holmer, J.: Focusing Quantum Many-body Dynamics II: The Rigorous Derivation of the 1D Focusing Cubic Nonlinear Schrödinger Equation from 3D. Analysis & PDE 10, 589–633 (2017)

    MathSciNet  MATH  Google Scholar 

  24. Chen, X., Holmer, J.: Correlation structures, Many-body Scattering Processes and the Derivation of the Gross-Pitaevskii Hierarchy, Int. Math. Res. Notices 2016, 3051-3110

  25. Chen, X., Holmer, J.: The Rigorous Derivation of the 2D Cubic Focusing NLS from Quantum Many-body Evolution, Int. Math. Res. Notices 2017, 4173–4216

  26. Chen, X., Holmer, J.: The Derivation of the Energy-critical NLS from Quantum Many-body Dynamics. Invent. Math. 217, 433–547 (2019)

    ADS  MathSciNet  MATH  Google Scholar 

  27. Chen, X., Holmer, J.: The Unconditional Uniqueness for the Energy-critical Nonlinear Schrödinger Equation on \({\mathbb{T}}^{4}\). Forum Math. Pi 10(e3), 1–49 (2022)

    MathSciNet  MATH  Google Scholar 

  28. Chen, X., Shen, S., Zhang, Z.: The Unconditonal Uniqueness for \(H^{1}\) -Supercritical NLS, to appear in Annals of PDE. (arXiv:2104.06592)

  29. Chen, X., Shen, S., Wu, J., Zhang, Z.: The Derivation of the Compressible Euler Equation from Quantum Many-body Dynamics, arXiv:2112.14897, 48pp

  30. Chen, X., Smith, P.: On the Unconditional Uniqueness of Solutions to the Infinite Radial Chern-Simons-Schrödinger Hierarchy. Analysis & PDE 7, 1683–1712 (2014)

    MathSciNet  MATH  Google Scholar 

  31. Chong, J.: Dynamics of Large Boson Systems with Attractive Interaction and a Derivation of the Cubic Focusing NLS in \( {\mathbb{R}}^{3}\). J. Math. Phys. 62, 042106 (2021)

    ADS  MATH  Google Scholar 

  32. Colliander, J., Keel, M., Staffilani, G., Takaoka, H., Tao, T.: Global existence and scattering for rough solutions of a nonlinear Schrödinger equation on \({\mathbb{R}}^{3}\). Comm. Pure Appl. Math. 57, 987–1014 (2004)

    MathSciNet  MATH  Google Scholar 

  33. Davis, K.B., Mewes, M.-O., Andrews, M.R., van Druten, N.J., Durfee, D.S., Kurn, D.M., Ketterle, W.: Bose-Einstein condensation in a gas of sodium atoms. Phys. Rev. Lett. 75, 3969–3973 (1995)

    ADS  Google Scholar 

  34. Duyckaerts, T., Holmer, J., Roudenko, S.: Scattering for the non-radial 3D cubic nonlinear Schrödinger equation. Math. Res. Lett. 15, 1233–1250 (2008)

    MathSciNet  MATH  Google Scholar 

  35. Erdös, L., Schlein, B., Yau, H.T.: Derivation of the Cubic non-linear Schrödinger Equation from Quantum Dynamics of Many-body Systems. Invent. Math. 167, 515–614 (2007)

    ADS  MathSciNet  MATH  Google Scholar 

  36. Erdös, L., Schlein, B., Yau, H.T.: Rigorous Derivation of the Gross-Pitaevskii Equation with a Large Interaction Potential. J. Amer. Math. Soc. 22, 1099–1156 (2009)

    MathSciNet  MATH  Google Scholar 

  37. Erdös, L., Schlein, B., Yau, H.T.: Derivation of the Gross-Pitaevskii Equation for the Dynamics of Bose-Einstein Condensate. Annals Math. 172, 291–370 (2010)

    MathSciNet  MATH  Google Scholar 

  38. Ginibre, J., Velo, G.: Scattering theory in the energy space for a class of nonlinear Schrödinger equations, J. Math. Pures Appl. (9) 64 (1985), pp. 363–401

  39. Gressman, P., Sohinger, V., Staffilani, G.: On the Uniqueness of Solutions to the Periodic 3D Gross-Pitaevskii Hierarchy. J. Funct. Anal. 266, 4705–4764 (2014)

    MathSciNet  MATH  Google Scholar 

  40. Grillakis, M.G., Margetis, D.: A Priori Estimates for Many-Body Hamiltonian Evolution of Interacting Boson System. J. Hyperb. Diff. Eqs. 5, 857–883 (2008)

    MathSciNet  MATH  Google Scholar 

  41. Grillakis, M.G., Machedon, M.: Pair excitations and the mean field approximation of interacting Bosons, I. Comm. Math. Phys. 324, 601–636 (2013)

    ADS  MathSciNet  MATH  Google Scholar 

  42. Grillakis, M.G., Machedon, M.: Pair excitations and the mean field approximation of interacting Bosons, II. Commun. PDE 42, 24–67 (2017)

    MathSciNet  MATH  Google Scholar 

  43. Grillakis, M.G., Machedon, M., Margetis, D.: Second Order Corrections to Mean Field Evolution for Weakly Interacting Bosons. I. Commun. Math. Phys. 294, 273–301 (2010)

    ADS  MathSciNet  MATH  Google Scholar 

  44. Grillakis, M.G., Machedon, M., Margetis, D.: Second Order Corrections to Mean Field Evolution for Weakly Interacting Bosons. II. Adv. Math. 228, 1788–1815 (2011)

    MathSciNet  MATH  Google Scholar 

  45. Hadac, M., Herr, S., Koch, H.: Well-posedness and scattering for the KP-II equation in a critical space, Ann. Inst. H. Poincar é Anal. Non Linéaire 26 (2009), 917-941. See also M. Hadac, S. Herr, H. Koch, Erratum to “Well-posedness and scattering for the KP-II equation in a critical space,” Ann. Inst. H. Poincaré Anal. Non Linéaire 27 (2010), 971–972

  46. Herr, S., Sohinger, V.: The Gross-Pitaevskii Hierarchy on General Rectangular Tori. Arch. Rational Mech. Anal. 220, 1119–1158 (2016)

    ADS  MathSciNet  MATH  Google Scholar 

  47. Herr, S., Sohinger, V.: Unconditional Uniqueness Results for the Nonlinear Schrödinger Equation. Commun. Contemp. Math. 21, 1850058 (2019)

    MathSciNet  MATH  Google Scholar 

  48. Hong, Y., Taliaferro, K., Xie, Z.: Unconditional Uniqueness of the cubic Gross-Pitaevskii Hierarchy with Low Regularity. SIAM J. Math. Anal. 47, 3314–3341 (2015)

    MathSciNet  MATH  Google Scholar 

  49. Hong, Y., Taliaferro, K., Xie, Z.: Uniqueness of solutions to the 3D quintic Gross-Pitaevskii hierarchy. J. Functional Analysis 270(1), 34–67 (2016)

    MathSciNet  MATH  Google Scholar 

  50. Kenig, C., Merle, F.: Global well-posedness, scattering and blow-up for the energy-critical, focusing, non-linear Schr ödinger equation in the radial case. Invent. Math. 166(3), 645–675 (2006)

    ADS  MathSciNet  MATH  Google Scholar 

  51. Killip, R., Vişan, M.: Scale invariant Strichartz estimates on tori and applications. Math. Res. Lett. 23, 445–472 (2016)

    MathSciNet  MATH  Google Scholar 

  52. Kirkpatrick, K., Schlein, B., Staffilani, G.: Derivation of the Two Dimensional Nonlinear Schrödinger Equation from Many Body Quantum Dynamics. Amer. J. Math. 133, 91–130 (2011)

    MathSciNet  MATH  Google Scholar 

  53. Klainerman, S., Machedon, M.: Space-time estimates for null forms and the local existence theorem. Comm. Pure Appl. Math. 46, 1221–1268 (1993)

    MathSciNet  MATH  Google Scholar 

  54. Klainerman, S., Machedon, M.: On the Uniqueness of Solutions to the Gross-Pitaevskii Hierarchy. Commun. Math. Phys. 279, 169–185 (2008)

    ADS  MathSciNet  MATH  Google Scholar 

  55. Koch, H., Tataru, D.: Dispersive estimates for principally normal pseudodifferential operators. Comm. Pure Appl. Math. 58, 217–284 (2005)

    MathSciNet  MATH  Google Scholar 

  56. Koch, H., Tataru, D.: A priori bounds for the 1D cubic NLS in negative Sobolev spaces, Int. Math. Res. Not. IMRN (2007), no. 16, Art. ID rnm053, 36 pp

  57. Koch, H., Tataru, D., Vişan, M.: Dispersive Equations and Nonlinear Waves, Oberwolfach Seminars 45 (2014), Birkhäuser

  58. Knowles, A., Pickl, P.: Mean-field Dynamics: Singular Potentials and Rate of Convergence. Comm. Math. Phys. 298, 101–138 (2010)

    ADS  MathSciNet  MATH  Google Scholar 

  59. Kuz, E.: Exact Evolution versus Mean Field with Second-order Correction for Bosons Interacting via Short-range Two-body Potential. Differential and Integral Equations 30, 587–630 (2017)

    MathSciNet  MATH  Google Scholar 

  60. Lewin, M., Nam, P.T., Rougerie, N.: Derivation of H artree’s theory for generic mean-field Bose systems. Adv. Math. 254, 570–621 (2014)

    MathSciNet  MATH  Google Scholar 

  61. Lin, J.E., Strauss, W.A.: Decay and scattering of solutions of a nonlinear Schrödinger equation. J. Funct. Anal. 30, 245–263 (1978)

    MATH  Google Scholar 

  62. Mendelson, D., Nahmod, A., Pavlović, N., Staffilani, G.: An infinite sequence of conserved quantities for the cubic Gross-Pitaevskii hierarchy on \({\mathbb{R}}\). Trans. Amer. Math. Soc 371, 5179–5202 (2019)

    MathSciNet  MATH  Google Scholar 

  63. Mendelson, D., Nahmod, A., Pavlović, N., Rosenzweig, M., Staffilani, G.: A Rigorous Derivation of the Hamiltonian Structure for the Nonlinear Schrödinger Equation. Adv. Math. 365, 107054 (2020)

    MathSciNet  MATH  Google Scholar 

  64. Mendelson, D., Nahmod, A., Pavlović, N., Rosenzweig, M., Staffilani, G.: Poisson Commuting Energies for a System of Infinitely Many Bosons, 97pp, arXiv:1910.06959

  65. Miao, C., Xu, G., Zhao, L.: Global well-posedness and scattering for the defocusing \(H^{1/2}\)-subcritical Hartree equation in \( {\mathbb{R}}^{d}\). Ann. Inst. H. Poincaré Anal. Non Linéaire 26, 1831–1852 (2009)

    ADS  MathSciNet  MATH  Google Scholar 

  66. Nam, P.T., Salzmann, R.: Derivation of 3D energy-critical nonlinear Schrödinger equation and Bogoliubov excitations for Bose gases. Commun. Math. Phys. 375, 495–571 (2020)

    ADS  MATH  Google Scholar 

  67. Nugent, E.: Novel Traps for Bose-Einstein Condensates, PhD thesis, University of Oxford, (2009)

  68. Savard, T.A., O’Hara, K.M., Thomas, J.E.: Laser-noise-induced heating in far-off resonance optical traps. PRA 56, R1098 (1997)

    ADS  Google Scholar 

  69. Shen, S.: The Rigorous Derivation of the \({\mathbb{T}}^{2}\) Focusing Cubic NLS from 3D. J. Funct. Anal. 280, 108934 (2021)

    MATH  Google Scholar 

  70. Sohinger, V.: Local Existence of Solutions to Randomized Gross-Pitaevskii Hierarchies. Trans. Amer. Math. Soc. 368, 1759–1835 (2016)

    MathSciNet  MATH  Google Scholar 

  71. Sohinger, V.: A Rigorous Derivation of the Defocusing Cubic Nonlinear Schrödinger Equation on \({\mathbb{T}}\)\(^{3}\) from the Dynamics of Many-body Quantum Systems. Ann. Inst. H. Poincaré Anal. Non Linéaire 32, 1337–1365 (2015)

    ADS  MathSciNet  MATH  Google Scholar 

  72. Sohinger, V., Staffilani, G.: Randomization and the Gross-Pitaevskii hierarchy. Arch. Rational Mech. Anal. 218, 417–485 (2015)

    ADS  MathSciNet  MATH  Google Scholar 

  73. Stamper-Kurn, D.M., Andrews, M.R., Chikkatur, A.P., Inouye, S., Miesner, H.-J., Stenger, J., Ketterle, W.: Optical Confinement of a Bose-Einstein Condensate. Phys. Rev. Lett. 80, 2027–2030 (1998)

    ADS  Google Scholar 

  74. Wiener, N.: The Quadratic Variation of a Function and its Fourier Coefficients. Journal of Mathematics and Physics 3, 72–94 (1924)

    MATH  Google Scholar 

  75. Xie, Z.: Derivation of a Nonlinear Schrödinger Equation with a General Power-type Nonlinearity in \(d=1,2\). Differ. Integral Equ. 28, 455–504 (2015)

    MATH  Google Scholar 

Download references

Acknowledgements

The authors would like to thank Shunlin Shen and the referees for their careful reading and checking of the paper. X.C. was partially supported by the NSF grant DMS-2005469 and by a Simons Fellowship. J.H. was supported in part by the NSF grant DMS-2055072.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Justin Holmer.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix A. Misc. Estimates

Appendix A. Misc. Estimates

1.1 A.1 Collapsing Estimates and Strichartz Estimates

We use the original Klainerman-Machedon collapsing estimate as our iterating estimate in this paper.

Lemma A.1

([13, 19, 54]) Footnote 14There is a C independent of Vjk, and N such that, (for \(f^{(k+1)}({\mathbf {x}}_{k+1},{\mathbf {x}}_{k+1}^{\prime })\) independent of t)

$$\begin{aligned} \left\| S^{(1,k)}B_{N,j,k+1}U^{(k+1)}(t)f^{(k+1)}\right\| _{L_{t}^{2}L_{{\mathbf {x}},{\mathbf {x}}^{\prime }}^{2}}\leqslant C\left\| V\right\| _{L^{1}}\left\| S^{(1,k+1)}f^{(k+1)}\right\| _{L_{\mathbf { x},{\mathbf {x}}^{\prime }}^{2}}. \end{aligned}$$

To explore the time derivative gain by Duhamel type terms, we also need the \( X_{s,b}\) version of Lemma A.1. As we are using \( S^{(k)}\) to denote the space derivatives, we surpress the s notation in definition of the \(X_{s,b}\) space and define the norm \(X_{b}^{(k)}\) by

$$\begin{aligned} \Vert \alpha ^{(k)}\Vert _{X_{b}^{(k)}}=\left( \int \langle \tau +\left| \varvec{\xi }_{k}\right| ^{2}-\left| \varvec{\xi }_{k}^{\prime }\right| ^{2}\rangle ^{2b}\left| {\hat{\alpha }}^{(k)}(\tau ,\varvec{\xi }_{k},\varvec{\xi }_{k}^{\prime })\right| ^{2}\,d\tau \,d\varvec{\xi }_{k}\,d\varvec{\xi }_{k}^{\prime }\right) ^{1/2} \end{aligned}$$

which is essentially a \(X_{0,b}\) norm. We then have the Duhamel time-derivative gain property and the \(X_{s,b}\) version of Lemma A.1.

Claim A.2

([21]) Let \(\frac{1}{2}<b<1\) and \(\theta (t)\) be a smooth cutoff. Then

$$\begin{aligned} \left\| \theta (t)\int _{0}^{t}U^{(k)}(t-s)\beta ^{(k)}(s)\,ds\right\| _{X_{b}^{(k)}}\lesssim \Vert \beta ^{(k)}\Vert _{X_{b-1}^{(k)}} \end{aligned}$$
(A.1)

Lemma A.3

([21]) There is a C independent of jk, and N such that (for \(\alpha ^{(k+1)}(t,{\mathbf {x}}_{k+1},{\mathbf {x}}_{k+1})\) dependent on t)

$$\begin{aligned} \Vert S^{(1,k)}B_{N,j,k+1}\alpha ^{(k+1)}\Vert _{L_{t}^{2}L_{{\mathbf {x}}, {\mathbf {x}}^{\prime }}^{2}}\leqslant C\Vert S^{(1,k+1)}\alpha ^{(k+1)}\Vert _{X_{\frac{1}{2}+}^{(k+1)}} \end{aligned}$$

In the above notation, the dual Strichartz estimates we need in this paper are the following:

Lemma A.4

([21]) Let

$$\begin{aligned} \beta ^{(k)}(t,{\mathbf {x}}_{k},{\mathbf {x}}_{k}^{\prime })=N^{3\beta -1}V(N^{\beta }(x_{i}-x_{j}))\gamma ^{(k)}(t,{\mathbf {x}}_{k},{\mathbf {x}} _{k}^{\prime }) \end{aligned}$$

Then for \(N\ge 1\), we have

$$\begin{aligned} \Vert \left| \nabla _{x_{i}}\right| \left| \nabla _{x_{j}}\right| \beta ^{(k)}\Vert _{X_{-\frac{1}{2}+}^{(k)}}\lesssim N^{ \frac{5}{2}\beta -1}\Vert \langle \nabla _{x_{i}}\rangle \langle \nabla _{x_{j}}\rangle \gamma ^{(k)}\Vert _{L_{t}^{2}L_{{\mathbf {x}}{\mathbf {x}} ^{\prime }}^{2}} \end{aligned}$$
(A.2)

and

$$\begin{aligned} \Vert \beta ^{(k)}\Vert _{X_{-\frac{1}{2}+}^{(k)}}\lesssim N^{\frac{1}{2} \beta -1}\Vert \langle \nabla _{x_{i}}\rangle \langle \nabla _{x_{j}}\rangle \gamma ^{(k)}\Vert _{L_{t}^{2}L_{{\mathbf {x}}{\mathbf {x}}^{\prime }}^{2}}. \end{aligned}$$
(A.3)

1.2 A.2. Convolution Estimates

Lemma A.5

Let \(W_{N}(x)=N^{3\beta }V(N^{\beta }x)-b_{0}\delta (x) \), where \(b_{0}=\int V(x)\,dx\). For any \(0\le s\le 1\),

$$\begin{aligned} \Vert W_{N}*f\Vert _{L_{x}^{p}}\lesssim N^{-\beta s}\Vert D^{s}f\Vert _{L_{x}^{p}} \end{aligned}$$

for any \(1<p<\infty \). The implicit constant depends only on \(\Vert \langle x\rangle V(x)\Vert _{L^{1}}\).

Proof

The case \(s=0\) is just Young’s inequality, since \(\Vert V_{N}\Vert _{L^{1}}=\Vert V\Vert _{L^{1}}<\infty \), independent of N. We next establish the estimate for \(s=1\). Since \({\hat{V}}(0)=b_{0}\),

$$\begin{aligned} \widehat{W_{N}}(\xi )={\hat{V}}(\xi N^{-\beta })-b_{0}=\int _{s=0}^{s=1}\frac{d }{ds}{\hat{V}}(s\xi N^{-\beta })\,ds=\int _{s=0}^{s=1}N^{-\beta }\xi \cdot \nabla {\hat{V}}(s\xi N^{-\beta })\,ds \end{aligned}$$

and thus

$$\begin{aligned} \widehat{W_{N}}(\xi ){\hat{f}}(\xi )=N^{-\beta }\int _{s=0}^{s=1}\nabla {\hat{V}} (s\xi N^{-\beta })\cdot \xi {\hat{f}}(\xi )\,ds \end{aligned}$$

Let \(Y(x)=xV(x)\) so that \({\hat{Y}}(\xi )=\nabla {\hat{V}}(\xi )\). It follows that

$$\begin{aligned}&\int _{y\in {\mathbb {R}}^{3}}W_{N}(x-y)f(y)\,dy \\&\quad =N^{-\beta }\int _{s=0}^{s=1}\int _{y\in {\mathbb {R}}^{3}}s^{-3}N^{3\beta }Y(s^{-1}N^{\beta }(x-y))\,\nabla f(y)\,dy\,ds \end{aligned}$$

By Minkowski’s inequality and Young’s inequality,

$$\begin{aligned}&\left\| \int _{y\in {\mathbb {R}} ^{3}}W_{N}(x-y)f(y)\,dy\right\| _{L_{x}^{p}} \\&\quad \lesssim N^{-\beta }\int _{s=0}^{1}\left\| \int _{y\in {\mathbb {R}} ^{3}}s^{-3}N^{3\beta }Y(s^{-1}N^{\beta }(x-y))\,\nabla f(y)\,dy\right\| _{L_{x}^{p}}\,ds \\&\quad \lesssim N^{-\beta }\Vert \nabla f\Vert _{L_{x}^{p}} \end{aligned}$$

The cases \(0<s<1\) follow by interpolation, as follows. Let \(P_{M}\) be the Littlewood-Paley projector for frequency \(0<M<\infty \). Then by the \(s=0\) and \(s=1\) cases,

$$\begin{aligned}&\Vert W_{N}*f\Vert _{L_{x}^{p}}=\left\| W_{N}*\sum _{M}P_{M}f\right\| _{L_{x}^{p}}\le \sum _{M}\Vert W_{N}*P_{M}f\Vert _{L_{x}^{p}} \\&\quad \lesssim \sum _{M}\min (1,N^{-\beta }M)\Vert P_{M}f\Vert _{L_{x}^{p}}\lesssim \sum _{M}\min (1,N^{-\beta }M)M^{-s}\Vert D^{s}f\Vert _{L_{x}^{p}} \end{aligned}$$

Divide the sum into the case \(M\le N^{\beta }\), for which we use \(\min (1,N^{-\beta }M)=N^{-\beta }M\), and the case \(M\ge N^{\beta }\), for which we use \(\min (1,N^{-\beta }M)=1\).

$$\begin{aligned} \lesssim \left( \sum _{M\le N^{\beta }}N^{-\beta }M^{1-s}+\sum _{M\ge N^{\beta }}M^{-s}\right) \Vert D^{s}f\Vert _{L_{x}^{p}}\lesssim N^{-\beta s}\Vert D^{s}f\Vert _{L_{x}^{p}} \end{aligned}$$

\(\square \)

Lemma A.6

Let \(W_{N}(x)=N^{3\beta }V(N^{\beta }x)-b_{0}\delta (x)\), where \(b_{0}=\int V(x)\,dx\).

$$\begin{aligned} \int (W_{N}*f_{1})f_{2}\,dx\lesssim N^{-\beta }\Vert |\nabla |^{1/2}f_{1}\Vert _{L_{x}^{2}}\Vert |\nabla |^{1/2}f_{2}\Vert _{L_{x}^{2}} \end{aligned}$$

Also, if \(f_{j}\) is replaced by \(P_{M_{j}}f_{j}\), then the same estimate holds but in addition we must have \(M_{1}\sim M_{2}\) (or otherwise the left side is zero).

Proof

By Plancherel

$$\begin{aligned} \int (W_{N}*f_{1})f_{2}\,dx=\int _{\xi }{\hat{W}}_{N}(\xi )f_{1}(\xi )f_{2}(\xi )\,d\xi \end{aligned}$$
(A.4)

As in the proof of Lemma A.5,

$$\begin{aligned} \widehat{W_{N}}(\xi )=N^{-\beta }{\hat{Q}}_{N}(\xi )\cdot \xi \,,\qquad {\hat{Q}} _{N}(\xi )\overset{\mathrm {def}}{=}\int _{s=0}^{s=1}\nabla {\hat{V}}(s\xi N^{-\beta })\,ds \end{aligned}$$

Since

$$\begin{aligned} \Vert {\hat{Q}}_{N}\Vert _{L_{\xi }^{\infty }}\le \Vert \nabla {\hat{V}}\Vert _{L_{\xi }^{\infty }}=\Vert [xV(x)]\widehat{\;\,}\Vert _{L_{\xi }^{\infty }}\le \Vert xV(x)\Vert _{L_{x}^{1}} \end{aligned}$$

we can just complete the proof by Cauchy-Schwarz in (A.4) \(\square \)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, X., Holmer, J. Quantitative Derivation and Scattering of the 3D Cubic NLS in the Energy Space. Ann. PDE 8, 11 (2022). https://doi.org/10.1007/s40818-022-00126-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s40818-022-00126-5

Keywords

Mathematics Subject Classification

Navigation