Skip to main content
Log in

Improving waveform quality in direct power control of DFIG using fuzzy controller

  • Original Article
  • Published:
Neural Computing and Applications Aims and scope Submit manuscript

Abstract

This paper proposes a new direct power control (DPC) strategy of double-fed induction generator using fuzzy logic controller. The active and reactive power equations are expanded, and effects of voltage vectors on active and reactive power variations are investigated quantitatively. The selection of the voltage vectors is performed using fuzzy system which is used instead of optimal switching table. Four variables are used as inputs of the fuzzy system which are errors of active and reactive powers, real time value of the rotor speed and stator flux position. The defuzzified output is the optimal selected voltage vector. MATLAB/Simulink software is used for the purpose of simulation and the results reported show the effectiveness of the proposed method in improving the waveform quality. Compared with the conventional DPC, the proposed fuzzy technique can reduce the power out of band percentage by about 25 % which is very impressive.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Rasoul Rahmani, Rubiyah Yusof, Mohammadmehdi Seyedmahmoudian, Saad Mekhilef (2013) Hybrid technique of ant colony and particle swarm optimization for short term wind energy forecasting. J Wind Eng Ind Aerodyn 123:163–170

    Article  Google Scholar 

  2. Heier S (1998) Grid integration of wind energy conversion systems. Wiley, New York

    Google Scholar 

  3. Muller S, Deicke M, De Doncker RW (2002) Doubly fed induction generator systems for wind turbines. IEEE Ind Appl Mag 8(3):26–33

    Article  Google Scholar 

  4. Pena R, Clare J, Asher G (1996) Doubly fed induction generator using back-to-back pwm converters and its application to variable-speed wind-energy generation. IEE Proc Electr Power Appl 143(3):231–241

    Article  Google Scholar 

  5. Shahabi M, Haghifam MR, Mohamadian M, Nabavi-Niaki S (2009) Microgrid dynamic performance improvement using a doubly fed induction wind generator. IEEE Trans Energy Convers 24(1):137–145

    Article  Google Scholar 

  6. Rahimi M, Parniani M (2010) Dynamic behavior analysis of doubly-fed induction generator wind turbines-the influence of rotor and speed controller parameters. Int J Electr Power Energy Syst 32(5):464–477

    Article  Google Scholar 

  7. Takahashi I, Noguchi T (1986) A new quick-response and high-efficiency control strategy of an induction motor. IEEE Transact Ind Appl 5:820–827

    Article  Google Scholar 

  8. Rahman MF, Zhong L, Lim KW (1998) A direct torque-controlled interior permanent magnet synchronous motor drive incorporating field weakening. IEEE Trans Ind Appl 34(6):1246–1253

    Article  Google Scholar 

  9. Habetler TG, Profumo F, Pastorelli M, Tolbert LM (1992) Direct torque control of induction machines using space vector modulation. IEEE Trans Ind Appl 28(5):1045–1053

    Article  Google Scholar 

  10. Akagi H, Sato H (2002) Control and performance of a doubly-fed induction machine intended for a flywheel energy storage system. IEEE Trans Power Electron 17(1):109–116

    Article  Google Scholar 

  11. Datta R, Ranganathan V (1999) Decoupled control of active and reactive power for a grid-connected doubly-fed wound rotor induction machine without position sensors. In: Industry applications conference, 1999. Thirty-fourth IAS annual meeting. Conference record of the 1999 IEEE, IEEE, vol 4, pp 2623–2630

  12. Abad G, Rodriguez MA, Iwanski G, Poza J (2010) Direct power control of doubly-fed-induction-generator-based wind turbines under unbalanced grid voltage. IEEE Trans Power Electron 25(2):442–452

    Article  Google Scholar 

  13. Xu L, Cheng W (1995) Torque and reactive power control of a doubly fed induction machine by position sensorless scheme. IEEE Trans Ind Appl 31(3):636–642

    Article  Google Scholar 

  14. Morel L, Godfroid H, Mirzaian A, Kauffmann J (1998) Double-fed induction machine: converter optimisation and field oriented control without position sensor. IEE Proc Electr Power Appl 145(4):360–368

    Article  Google Scholar 

  15. Datta R, Ranganathan V (2001) Direct power control of grid-connected wound rotor induction machine without rotor position sensors. IEEE Trans Power Electron 16(3):390–399

    Article  Google Scholar 

  16. Xu L, Cartwright P (2006) Direct active and reactive power control of dfig for wind energy generation. IEEE Trans Energy Convers 21(3):750–758

    Article  Google Scholar 

  17. Zhi D, Xu L (2007) Direct power control of dfig with constant switching frequency and improved transient performance. IEEE Trans Energy Convers 22(1):110–118

    Article  Google Scholar 

  18. Abad G, Rodríguez MÁ, Poza J (2008) Two-level vsc based predictive direct torque control of the doubly fed induction machine with reduced torque and flux ripples at low constant switching frequency. IEEE Trans Power Electron 23(3):1050–1061

    Article  Google Scholar 

  19. Kazemi Verij M, Sadeghi Yazdankhah A, Madadi Kojabadi H (2010) Direct power control of dfig based on discrete space vector modulation. Renew Energy 35(5):1033–1042

    Article  Google Scholar 

  20. Wheeler PW, Rodriguez J, Clare JC, Empringham L, Weinstein A (2002) Matrix converters: a technology review. IEEE Trans Ind Electron 49(2):276–288

    Article  Google Scholar 

  21. Wheeler PW, Clare JC, Apap M, Bradley KJ (2008) Harmonic loss due to operation of induction machines from matrix converters. IEEE Trans Ind Electron 55(2):809–816

    Article  Google Scholar 

  22. Djahbar A, Mazari B (2010) Performances evaluation of two-motor drive with matrix converter supply and series connection of stator windings. Int Rev Electr Eng 5(4):1504–1520

    Google Scholar 

  23. Cárdenas R, Peña R, Tobar G, Clare J, Wheeler P, Asher G (2009) Stability analysis of a wind energy conversion system based on a doubly fed induction generator fed by a matrix converter. IEEE Trans Ind Electron 56(10):4194–4206

    Article  Google Scholar 

  24. Zhang S, Tseng KJ, Nguyen T (2009) Modeling of ac-ac matrix converter for wind energy conversion system. In: 4th IEEE conference on industrial electronics and applications, 2009. ICIEA 2009. IEEE, pp 184–191

  25. Liu Qh, He Yk, Bian Sj (2004) Study on the no-load cutting-in control of the variable-speed constant-frequency (vscf) wind-power generator. In: Proceedings of the Csee 3, 001

  26. Kamal E, Aitouche A, Abbes D (2014) Robust fuzzy scheduler fault tolerant control of wind energy systems subject to sensor and actuator faults. Int J Electr Power Energy Syst 55(0):402–419. http://www.sciencedirect.com/science/article/pii/S0142061513004031, doi:10.1016/j.ijepes.2013.09.021

  27. Rahmani R, Mahmodian M, Mekhilef S, Shojaei A (2012) Fuzzy logic controller optimized by particle swarm optimization for dc motor speed control. In: IEEE student conference on research and development (SCOReD), pp 109–113. doi:10.1109/SCOReD.2012.6518621.

  28. Rahmani R, Langeroudi N, Yousefi R, Mahdian M, Seyedmahmoudian M (2014) Fuzzy logic controller and cascade inverter for direct torque control of im. Neural Comput Appl, pp 1–10 (2014). doi:10.1007/s00521-014-1561-9

  29. Rahmani R, Seyedmahmoudian M, Mekhilef S, Yusof R (2013) Implementation of fuzzy logic maximum power point tracking controller for photovoltaic system. Am J Appl Sci 10(3):209–218

    Article  Google Scholar 

  30. Jabr HM, Dongyun Lu, Narayan CKar (2011) Design and implementation of neuro-fuzzy vector control for wind-driven doubly-fed induction generator. IEEE Trans Sustain Energy 2(4):404–413

    Article  Google Scholar 

  31. Kazemi MV, Moradi M, Kazemi RV (2012) Minimization of powers ripple of direct power controlled dfig by fuzzy controller and improved discrete space vector modulation. Electr Power Syst Res 89(0):23–30 (2012). http://www.sciencedirect.com/science/article/pii/S0378779612000491, doi:10.1016/j.epsr.2012.02.008

  32. Mishra S, Mishra Y, Li F, Dong Z (2009) Ts-fuzzy controlled dfig based wind energy conversion systems. In: IEEE Power Energy Society General Meeting, 2009. PES ’09. pp 1–7. doi:10.1109/PES.2009.5275674

  33. Belkacem B, Allaoui T, Tadjine M, Safa A (2013) Hybrid fuzzy sliding mode control of a dfig integrated into the network. Int J Power Electron Drive Syst (IJPEDS) 3(4):351–364. http://iaesjournal.com/online/index.php/IJPEDS/article/view/4072

  34. Kairous D, Wamkeue R (2012) Dfig-based fuzzy sliding-mode control of wecs with a flywheel energy storage. Electr Power Syst Res 93(0):16–23. http://www.sciencedirect.com/science/article/pii/S0378779612002027, doi:10.1016/j.epsr.2012.07.002

  35. Jerbi L, Krichen L, Ouali A (2009) A fuzzy logic supervisor for active and reactive power control of a variable speed wind energy conversion system associated to a flywheel storage system. Electr Power Syst Res 79(6):919–925. http://www.sciencedirect.com/science/article/pii/S0378779608003209, doi:10.1016/j.epsr.2008.12.006

  36. Lee CC (1990) Fuzzy logic in control systems: fuzzy logic controller. ii. IEEE Trans Syst Man Cybern 20(2):419–435

    Article  MATH  Google Scholar 

  37. Castro JL (1995) Fuzzy logic controllers are universal approximators. IEEE Trans Syst Man Cybern 25(4):629–635

    Article  Google Scholar 

Download references

Acknowledgments

This work is supported by Ministry of Education Malaysia, Universiti Teknologi Malaysia (UTM) and Centre for Artificial Intelligence & Robotics (CAIRO), under grant vot number 00G20. The authors also gratefully acknowledge the helpful comments and suggestions of the reviewers, which have improved the presentation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. Rahmani.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Boroujeni, H.Z., Othman, M.F., Shirdel, A.H. et al. Improving waveform quality in direct power control of DFIG using fuzzy controller. Neural Comput & Applic 26, 949–955 (2015). https://doi.org/10.1007/s00521-014-1725-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00521-014-1725-7

Keywords

Navigation