Skip to main content

Advertisement

Log in

A comprehensive review and classified comparison of MPPT algorithms in PV systems

  • Review Article
  • Published:
Energy Systems Aims and scope Submit manuscript

Abstract

One of the most available energy sources in the world is solar energy, while in the category of renewable and nonrenewable energies is in the first group. Power generation of a photovoltaic (PV) system is a technique which is possible by using solar cells. Since photovoltaic systems cannot force solar cells to operate at MPP, a controller is needed to do so. If the controller can operate more accurately, or in other words, be optimized, the system will have an appropriate output. Many papers have been presented on maximum power point tracking algorithms. This paper intends to review the previous articles and provide a proper division, performance method. This explains the performance, application, advantages and disadvantages of algorithms to be a good reference for selecting the appropriate algorithm. Algorithms in this paper are divided into four categories methods based on measurement, calculation, intelligent schemes and hybrid schemes. The exhibition of new algorithms and the optimization of previous algorithms have led to the number of articles in this field over the years. In order to review the methods a comparative table is also provided. Finally, a PV system has been controlled by using three algorithms P&O, IC and Fuzzy-PI. The outputs control signals from the MPPT have been applied by Boost and SEPIC converters, and the outputs have been compared. Simulations have been performed in MATLAB/Simulink software.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22

Similar content being viewed by others

References

  1. Ahmadi, M.H., et al.: Evaluation of electrical efficiency of photovoltaic thermal solar collector. Eng. Appl. Comput. Fluid Mech. 14(1), 545–565 (2020)

    Google Scholar 

  2. Ahmadi, M.H., et al.: Solar power technology for electricity generation: a critical review. Energy Sci. Eng. 6(5), 340–361 (2018)

    Article  Google Scholar 

  3. Pandey, A.K., et al.: Recent advances in solar photovoltaic systems for emerging trends and advanced applications. Renew. Sustain. Energy Rev. 53, 859–884 (2016)

    Article  Google Scholar 

  4. Akbar, M., Pourfayaz, F., Ahmadi, M.H.: Design of a cost-effective wind/photovoltaic/hydrogen energy system for supplying a desalination unit by a heuristic approach. Sol. Energy 139, 666–675 (2016)

    Article  Google Scholar 

  5. Belhaouas, N., et al.: PV array power output maximization under partial shading using new shifted PV array arrangements. Appl. Energy 187, 326–337 (2017)

    Article  Google Scholar 

  6. Liu, J., et al.: Global MPPT algorithm with coordinated control of PSO and INC for rooftop PV array. J. Eng. 2017(13), 778–782 (2017)

    Article  Google Scholar 

  7. Khatibi, A., Razi Astaraei, F., Ahmadi, M.H.: Generation and combination of the solar cells: a current model review. Energy Sci. Eng. 7(2), 305–322 (2019)

    Article  Google Scholar 

  8. Li, X., et al.: Comprehensive studies on operational principles for maximum power point tracking in photovoltaic systems. IEEE Access 7, 121407–121420 (2019)

    Article  Google Scholar 

  9. Mao, M., et al.: Classification and summarization of solar photovoltaic MPPT techniques: a review based on traditional and intelligent control strategies. Energy Rep. 6, 1312–1327 (2020)

    Article  Google Scholar 

  10. Hanzaei, S.H., Gorji, S.A., Ektesabi, M.: A scheme-based review of MPPT techniques with respect to input variables including solar irradiance and PV arrays’ temperature. IEEE Access 8, 182229–182239 (2020)

    Article  Google Scholar 

  11. Rezk, H., Fathy, A., Abdelaziz, A.Y.: A comparison of different global MPPT techniques based on meta-heuristic algorithms for photovoltaic system subjected to partial shading conditions. Renew. Sustain. Energy Rev. 74, 377–386 (2017)

    Article  Google Scholar 

  12. Mohapatra, A., et al.: A review on MPPT techniques of PV system under partial shading condition. Renew. Sustain. Energy Rev. 80, 854–867 (2017)

    Article  Google Scholar 

  13. Mehta, H.K., et al.: Accurate expressions for single-diode-model solar cell parameterization. IEEE J. Photovolt. 9(3), 803–810 (2019)

    Article  Google Scholar 

  14. Jeong, H., et al.: Review of differential power processing converter techniques for photovoltaic applications. IEEE Trans. Energy Convers. 34(1), 351–360 (2018)

    Article  Google Scholar 

  15. Montecucco, A., Knox, A.R.: Maximum power point tracking converter based on the open-circuit voltage method for thermoelectric generators. IEEE Trans. Power Electron. 30(2), 828–839 (2014)

    Article  Google Scholar 

  16. Liu, Z., Hsu, Y.-P., Hella, M.M.: A thermal/RF hybrid energy harvesting system with rectifying-combination and improved fractional-OCV MPPT method. IEEE Trans. Circuits Syst. I Regul. Pap. 67(10), 3352–3363 (2020)

    Article  Google Scholar 

  17. Balato, M., et al.: Optimization of both perturb & observe and open circuit voltage MPPT techniques for resonant piezoelectric vibration harvesters feeding bridge rectifiers. Sens. Actuators A Phys. 278, 85–97 (2018)

    Article  Google Scholar 

  18. Sher, H.A., et al.: A new sensorless hybrid MPPT algorithm based on fractional short-circuit current measurement and P&O MPPT. IEEE Trans. Sustain. Energy 6(4), 1426–1434 (2015)

    Article  Google Scholar 

  19. Vijayakumari, A.: A non-iterative MPPT of PV array with online measured short circuit and open circuit quantities. J. King Saud Univ. Eng. Sci. 33(3), 176–185 (2021)

    Google Scholar 

  20. Ziouh, A., Abbou, A.: Comparative study of fuzzy logic, ripple correlation control and pilot cell methods for maximum power point tracking. In: 2016 International conference on electrical sciences and technologies in Maghreb (CISTEM). IEEE (2016)

  21. Vicente, E.M., Moreno, R.L., Ribeiro, E.R.: MPPT technique based on current and temperature measurements. Int. J. Photoenergy 2015, 242745 (2015). https://doi.org/10.1155/2015/242745

    Article  Google Scholar 

  22. da Rocha, N.M.M., Martins, D.C., Passos, J.C.: MPPT method based on temperature control of the photovoltaic cells. In: 2016 12th IEEE international conference on industry applications (INDUSCON). IEEE (2016)

  23. Madhavadas, M., Thomas, V.C.: FOCV based MPPT control for PV, and sine reference-feedback oriented control for single phase grid tied solar inverter. In: 2018 Second international conference on inventive communication and computational technologies (ICICCT). IEEE (2018)

  24. Öztürk, S., Çadırcı, I.: A generalized and flexible control scheme for photovoltaic grid-tie microinverters. IEEE Trans. Ind. Appl. 54(1), 505–516 (2017)

    Article  Google Scholar 

  25. Aref, M., et al.; Microcontroller look-up table of digital control MPPT of PV system. In: 2018 IEEE 59th international scientific conference on power and electrical engineering of Riga Technical University (RTUCON). IEEE (2018)

  26. Zhang, L., et al.: A maximum power point tracking algorithm of load current maximization-perturbation and observation method with variable step size. Symmetry 12(2), 244 (2020)

    Article  Google Scholar 

  27. Ramli, N., Walker, S.: Power maximization using multiple step, load-side, current-mode sensing. In: 2015 3rd International renewable and sustainable energy conference (IRSEC). IEEE (2015)

  28. Husain, M.A., et al.: Comparative assessment of maximum power point tracking procedures for photovoltaic systems. Green Energy Environ. 2(1), 5–17 (2017)

    Article  Google Scholar 

  29. Patel, H., Agarwal, V.: MPPT scheme for a PV-fed single-phase single-stage grid-connected inverter operating in CCM with only one current sensor. IEEE Trans. Energy Convers. 24(1), 256–263 (2009)

    Article  Google Scholar 

  30. Das, D., et al.: Luenberger observer based current estimated boost converter for PV maximum power extraction—a current sensorless approach. IEEE J. Photovolt. 9(1), 278–286 (2018)

    Article  Google Scholar 

  31. Li, S.: A MPPT speed optimization strategy for photovolatic system using VWP interval based on weather forecast. Optik 192, 162958 (2019)

    Article  Google Scholar 

  32. Kebede, A.B., Worku, G.B.: Comprehensive review and performance evaluation of maximum power point tracking algorithms for photovoltaic system. Glob. Energy Interconnect. 3(4), 398–412 (2020)

    Article  Google Scholar 

  33. Ahmed, J., Salam, Z.: A modified P&O maximum power point tracking method with reduced steady-state oscillation and improved tracking efficiency. IEEE Trans. Sustain. Energy 7(4), 1506–1515 (2016)

    Article  Google Scholar 

  34. Kwan, T.H., Wu, X.: High performance P&O based lock-on mechanism MPPT algorithm with smooth tracking. Sol. Energy 155, 816–828 (2017)

    Article  Google Scholar 

  35. Bhattacharyya, S., et al.: Steady output and fast tracking MPPT (SOFT MPPT) for P&O and InC algorithms. IEEE Trans. Sustain. Energy 12(1), 293–302 (2021)

    Article  Google Scholar 

  36. Li, S., et al.: A variable-weather-parameter MPPT method based on a defined characteristic resistance of photovoltaic cell. Sol. Energy 199, 673–684 (2020)

    Article  Google Scholar 

  37. Javed, M.Y., et al.: A novel MPPT design using generalized pattern search for partial shading. Energy Build. 133, 59–69 (2016)

    Article  Google Scholar 

  38. Ahmed, J., Salam, Z.: An enhanced adaptive P&O MPPT for fast and efficient tracking under varying environmental conditions. IEEE Trans. Sustain. Energy 9(3), 1487–1496 (2018)

    Article  Google Scholar 

  39. Batzelis, E.I., et al.: A state-space dynamic model for photovoltaic systems with full ancillary services support. IEEE Trans. Sustain. Energy 10(3), 1399–1409 (2018)

    Article  Google Scholar 

  40. Batzelis, E.I., Anagnostou, G., Pal, B.C.: A state-space representation of irradiance-driven dynamics in two-stage photovoltaic systems. IEEE J. Photovolt. 8(4), 1119–1124 (2018)

    Article  Google Scholar 

  41. Rana, K.P.S., et al.: A novel dPdI feedback based control scheme using GWO tuned PID controller for efficient MPPT of PEM fuel cell. ISA Trans. 93, 312–324 (2019)

    Article  Google Scholar 

  42. Bouchakour, S., et al.: Evaluation of the PV energy production after 12-years of operating. In: AIP conference proceedings, vol. 1968, no. 1. AIP Publishing LLC (2018)

  43. Guerrero-Cabarcas, G.D., et al.: The integral mean value method approach to obtaining the optimal operating conditions of a photovoltaic system. In: 2019 IEEE power and energy conference at Illinois (PECI). IEEE (2019)

  44. Bouchakour, S., et al.: Direct power control of grid connected photovoltaic system with linear reoriented coordinate method as maximum power point tracking algorithm. Rev. Roum. Sci. Techn. Électrotechn. et Énerg 59(1), 57–66 (2014)

    Google Scholar 

  45. Pradhan, R., Subudhi, B.: Double integral sliding mode MPPT control of a photovoltaic system. IEEE Trans. Control Syst. Technol. 24(1), 285–292 (2015)

    Article  Google Scholar 

  46. Vázquez, N., et al.: Maximum power point tracking based on sliding mode control. Int. J. Photoenergy 2015, 380684 (2015). https://doi.org/10.1155/2015/380684

    Article  Google Scholar 

  47. Meng, Z., et al.: Sliding-mode control based on index control law for MPPT in photovoltaic systems. CES Trans. Electr. Mach. Syst. 2(3), 303–311 (2018)

    Article  Google Scholar 

  48. Karabacak, M.: A new perturb and observe based higher order sliding mode MPPT control of wind turbines eliminating the rotor inertial effect. Renew. Energy 133, 807–827 (2019)

    Article  Google Scholar 

  49. Srinivas, C.L.S., Sreeraj, E.S.: A maximum power point tracking technique based on ripple correlation control for single phase photovoltaic system with fuzzy logic controller. Energy Proc. 90, 69–77 (2016)

    Article  Google Scholar 

  50. Costabeber, A., Carraro, M., Zigliotto, M.: Convergence analysis and tuning of a sliding-mode ripple-correlation MPPT. IEEE Trans. Energy Convers. 30(2), 696–706 (2014)

    Article  Google Scholar 

  51. Hammami, M., Grandi, G.: A single-phase multilevel PV generation system with an improved ripple correlation control MPPT algorithm. Energies 10(12), 2037 (2017)

    Article  Google Scholar 

  52. Shim, M., et al.: Fully integrated low-power energy harvesting system with simplified ripple correlation control for system-on-a-chip applications. IEEE Trans. Power Electron. 34(5), 4353–4361 (2018)

    Article  Google Scholar 

  53. Venkatramanan, D., John, V.: Dynamic modeling and analysis of buck converter based solar PV charge controller for improved MPPT performance. IEEE Trans. Ind. Appl. 55(6), 6234–6246 (2019)

    Article  Google Scholar 

  54. Spiazzi, G., Buso, S., Mattavelli, P.: Analysis of MPPT algorithms for photovoltaic panels based on ripple correlation techniques in presence of parasitic components. In: 2009 Brazilian power electronics conference. IEEE (2009)

  55. Tey, K.S., Mekhilef, S.: Modified incremental conductance algorithm for photovoltaic system under partial shading conditions and load variation. IEEE Trans. Ind. Electron. 61(10), 5384–5392 (2014)

    Article  Google Scholar 

  56. Alsumiri, M.: Residual incremental conductance based nonparametric MPPT control for solar photovoltaic energy conversion system. IEEE Access 7, 87901–87906 (2019)

    Article  Google Scholar 

  57. Kumar, N., et al.: Self-adaptive incremental conductance algorithm for swift and ripple-free maximum power harvesting from PV array. IEEE Trans. Ind. Inform. 14(5), 2031–2041 (2017)

    Article  Google Scholar 

  58. Necaibia, S., et al.: Enhanced auto-scaling incremental conductance MPPT method, implemented on low-cost microcontroller and SEPIC converter. Sol. Energy 180, 152–168 (2019)

    Article  Google Scholar 

  59. Shahid, H., et al.: Implementation of the novel temperature controller and incremental conductance MPPT algorithm for indoor photovoltaic system. Sol. Energy 163, 235–242 (2018)

    Article  Google Scholar 

  60. Tang, S., et al.: An enhanced MPPT method combining fractional-order and fuzzy logic control. IEEE J. Photovolt. 7(2), 640–650 (2017)

    Article  Google Scholar 

  61. Li, X., et al.: A novel beta parameter based fuzzy-logic controller for photovoltaic MPPT application. Renew. Energy 130, 416–427 (2019)

    Article  Google Scholar 

  62. Rakhshan, M., et al.: Maximum power point tracking control of photovoltaic systems: a polynomial fuzzy model-based approach. IEEE J. Emerg. Sel. Top. Power Electron. 6(1), 292–299 (2017)

    Article  Google Scholar 

  63. Jouda, A., et al.: Optimization of scaling factors of fuzzy–MPPT controller for stand-alone photovoltaic system by particle swarm optimization. Energy Proc. 111, 954–963 (2017)

    Article  Google Scholar 

  64. Rezk, H., et al.: Design and hardware implementation of new adaptive fuzzy logic-based MPPT control method for photovoltaic applications. IEEE Access 7, 106427–106438 (2019)

    Article  Google Scholar 

  65. Corcau, J.I., Dinca, L.: Modeling and analysis of a fuzzy type MPPT algorithm. In: 2019 International conference on electrical drives & power electronics (EDPE). IEEE (2019)

  66. Chen, L., Wang, X.: Enhanced MPPT method based on ANN-assisted sequential Monte-Carlo and quickest change detection. IET Smart Grid 2(4), 635–644 (2019)

    Article  MathSciNet  Google Scholar 

  67. Harrag, A., Messalti, S.: IC-based variable step size neuro-fuzzy MPPT improving PV system performances. Energy Proc. 157, 362–374 (2019)

    Article  Google Scholar 

  68. Bouselham, L., et al.: A new MPPT-based ANN for photovoltaic system under partial shading conditions. Energy Proc. 111, 924–933 (2017)

    Article  Google Scholar 

  69. Reddy, K.J., Sudhakar, N.: High voltage gain interleaved boost converter with neural network based MPPT controller for fuel cell based electric vehicle applications. IEEE Access 6, 3899–3908 (2018)

    Article  Google Scholar 

  70. Messalti, S., Harrag, A., Loukriz, A.: A new variable step size neural networks MPPT controller: review simulation, hardware implementation. Renew. Sustain. Energy Rev. 68, 221–233 (2017)

    Article  Google Scholar 

  71. Divyasharon, R., Narmatha Banu, R., Devaraj, D.: Artificial neural network based MPPT with CUK converter topology for PV systems under varying climatic conditions. In: 2019 IEEE international conference on intelligent techniques in control, optimization and signal processing (INCOS). IEEE (2019)

  72. Zhang, W., et al.: A modified hybrid maximum power point tracking method for photovoltaic arrays under partially shading condition. IEEE Access 7, 160091–160100 (2019)

    Article  Google Scholar 

  73. Mirza, A.F., et al.: A salp-swarm optimization based MPPT technique for harvesting maximum energy from PV systems under partial shading conditions. Energy Convers. Manag. 209, 112625 (2020)

    Article  Google Scholar 

  74. Gavhane, P.S., et al.: EL-PSO based MPPT for solar PV under partial shaded condition. Energy Proc. 117, 1047–1053 (2017)

    Article  Google Scholar 

  75. Sarvi, M., Ahmadi, S., Abdi, S.: A PSO-based maximum power point tracking for photovoltaic systems under environmental and partially shaded conditions. Prog. Photovol. Res. Appl. 23(2), 201–214 (2015)

    Article  Google Scholar 

  76. Ibrahim, A.-W., et al.: PV maximum power-point tracking using modified particle swarm optimization under partial shading conditions. Chin. J. Electr. Eng. 6(4), 106–121 (2020)

    Article  MathSciNet  Google Scholar 

  77. Li, H., et al.: An overall distribution particle swarm optimization MPPT algorithm for photovoltaic system under partial shading. IEEE Trans. Ind. Electron. 66(1), 265–275 (2018)

    Article  Google Scholar 

  78. Xu, L., et al.: Improved particle swarm optimization (PSO)-based MPPT method for PV string under partially shading and uniform irradiance condition. In: 2020 Asia energy and electrical engineering symposium (AEEES). IEEE (2020)

  79. Shi, J., et al.: MPPT for PV systems based on a dormant PSO algorithm. Electr. Power Syst. Res. 123, 100–107 (2015)

    Article  Google Scholar 

  80. Titri, S., et al.: A new MPPT controller based on the Ant colony optimization algorithm for Photovoltaic systems under partial shading conditions. Appl. Soft Comput. 58, 465–479 (2017)

    Article  Google Scholar 

  81. Mokhtari, Y., Rekioua, D.: High performance of maximum power point tracking using ant colony algorithm in wind turbine. Renew. Energy 126, 1055–1063 (2018)

    Article  Google Scholar 

  82. Sahoo, S.K., et al.: Maximum power point tracking for PV panels using ant colony optimization. In: 2017 Innovations in power and advanced computing technologies (i-PACT). IEEE (2017)

  83. Jiang, L.L., Maskell, D.L., Patra, J.C.: A novel ant colony optimization-based maximum power point tracking for photovoltaic systems under partially shaded conditions. Energy Build. 58, 227–236 (2013)

    Article  Google Scholar 

  84. Padmanaban, S., et al.: A hybrid ANFIS-ABC based MPPT controller for PV system with anti-islanding grid protection: experimental realization. IEEE Access 7, 103377–103389 (2019)

    Article  Google Scholar 

  85. soufyane Benyoucef, A., et al.: Artificial bee colony based algorithm for maximum power point tracking (MPPT) for PV systems operating under partial shaded conditions. Appl. Soft Comput. 32, 38–48 (2015)

    Article  Google Scholar 

  86. Li, N., et al.: Maximum power point tracking control based on modified ABC algorithm for shaded PV system. In: 2019 AEIT international conference of electrical and electronic technologies for automotive (AEIT AUTOMOTIVE). IEEE (2019)

  87. Ahmed, J., Salam, Z.: A maximum power point tracking (MPPT) for PV system using cuckoo search with partial shading capability. Appl. Energy 119, 118–130 (2014)

    Article  Google Scholar 

  88. Mosaad, M.I., et al.: Maximum power point tracking of PV system based cuckoo search algorithm; review and comparison. Energy Proc. 162, 117–126 (2019)

    Article  Google Scholar 

  89. Reynolds, A.M., Frye, M.A.: Free-flight odor tracking in Drosophila is consistent with an optimal intermittent scale-free search. PLoS ONE 2(4), e354 (2007)

    Article  Google Scholar 

  90. Nugraha, D.A., Lian, K.-L.: A novel MPPT method based on cuckoo search algorithm and golden section search algorithm for partially shaded PV system. Can. J. Electr. Comput. Eng. 42(3), 173–182 (2019)

    Article  Google Scholar 

  91. Zhou, L., et al.: New approach for MPPT control of photovoltaic system with mutative-scale dual-carrier chaotic search. IEEE Trans. Power Electron. 26(4), 1038–1048 (2010)

    Article  Google Scholar 

  92. Blum, C., et al.: Hybrid metaheuristics in combinatorial optimization: a survey. Appl. Soft Comput. 11(6), 4135–4151 (2011)

    Article  Google Scholar 

  93. Jamadi, M., Merrikh-Bayat, F., Bigdeli, M.: Very accurate parameter estimation of single-and double-diode solar cell models using a modified artificial bee colony algorithm. Int. J. Energy Environ. Eng. 7(1), 13–25 (2016)

    Article  Google Scholar 

  94. Sharifzadeh, H., Amjady, N.: A review of metaheuristic algorithms in optimization. J. Model. Eng. 12(38), 27–43 (2014)

    Google Scholar 

  95. Shams, I., Saad, M., Soon, T.K.: Improved team game optimization algorithm based solar MPPT with fast convergence speed and fast response to load variations. IEEE Trans. Ind. Electron. (2020). https://doi.org/10.1109/TIE.2020.3001798

    Article  Google Scholar 

  96. Meddour, S., et al.: A novel approach for PV system based on metaheuristic algorithm connected to the grid using FS-MPC controller. Energy Proc. 162, 57–66 (2019)

    Article  Google Scholar 

  97. Behera, M.K., Saikia, L.C.: A new combined extreme learning machine variable steepest gradient ascent MPPT for PV system based on optimized PI-FOI cascade controller under uniform and partial shading conditions. Sustain. Energy Technol. Assess. 42, 100859 (2020)

    Google Scholar 

  98. Pal, R.S., Mukherjee, V.: Metaheuristic based comparative MPPT methods for photovoltaic technology under partial shading condition. Energy 212, 118592 (2020)

    Article  Google Scholar 

  99. Farajdadian, S., Hassan Hosseini, S.M.: Optimization of fuzzy-based MPPT controller via metaheuristic techniques for stand-alone PV systems. Int. J. Hydrog. Energy 44(47), 25457–25472 (2019)

    Article  Google Scholar 

  100. Khanam, N., Khan, B.H., Imtiaz, T.: Maximum power extraction of solar PV system using meta-heuristic MPPT techniques: a comparative study. In: 2019 International conference on electrical, electronics and computer engineering (UPCON). IEEE (2019)

  101. Ammar, H.H., et al.: Metaheuristic optimization of fractional order incremental conductance (FO-INC) maximum power point tracking (MPPT). Complexity 2019, 7687891 (2019). https://doi.org/10.1155/2019/7687891

    Article  Google Scholar 

  102. Farayola, A.M., Sun, Y., Ali, A.: ANN-PSO optimization of PV systems under different weather conditions. In: 2018 7th International conference on renewable energy research and applications (ICRERA). IEEE (2018)

  103. Al-Soeidat, M.R., Cembrano, A., Lu, D.D.: Comparing effectiveness of hybrid mppt algorithms under partial shading conditions. In: 2016 IEEE international conference on power system technology (POWERCON). IEEE (2016)

  104. Baimel, D., et al.: Novel optimized method for maximum power point tracking in PV systems using fractional open circuit voltage technique. In: 2016 International symposium on power electronics, electrical drives, automation and motion (SPEEDAM). IEEE (2016)

  105. Bharath, K.R.: A novel sensorless hybrid MPPT method based on FOCV measurement and P&O MPPT technique for solar PV applications. In: 2019 International conference on advances in computing and communication engineering (ICACCE). IEEE (2019)

  106. Sher, H.A., Murtaza, A.F., Al-Haddad, K.: A hybrid maximum power point tracking method for photovoltaic applications with reduced offline measurements. In: 2017 IEEE international conference on industrial technology (ICIT). IEEE (2017)

  107. Hammami, M., Grandi, G., Rudan, M.: An improved MPPT algorithm based on hybrid RCC scheme for single-phase PV systems. In: IECON 2016-42nd annual conference of the IEEE industrial electronics society. IEEE (2016)

  108. Haji, D., Genc, N.: Fuzzy and P&O based MPPT controllers under different conditions. In: 2018 7th International conference on renewable energy research and applications (ICRERA). IEEE (2018)

  109. Kumar, R., Kumar, B., Swaroop, D.: Fuzzy logic based improved P&O MPPT technique for partial shading conditions. In: 2018 international conference on computing, power and communication technologies (GUCON). IEEE (2018)

  110. Jin, Y., Wang, H., Wang, C.: Maximum power point tracking of photovoltaic system based on fuzzy-PI combined controller. In: 2017 Chinese automation congress (CAC). IEEE (2017)

  111. Cheng, Z.P., et al.: Coordinated control of independent DC micro-grid based on fuzzy-PI algorithm. J. Eng. 2019(16), 1107–1111 (2019)

    Article  Google Scholar 

  112. Kharchouf, I., et al.: Comparative study of MPPT and pitch angle using PI and fuzzy logic controllers. In: 2018 6th International renewable and sustainable energy conference (IRSEC). IEEE (2018)

  113. Yang, Z., et al.: Analysis of improved PSO and perturb & observe global MPPT algorithm for PV array under partial shading condition. In: 2017 29th Chinese control and decision conference (CCDC). IEEE (2017)

  114. Chaieb, H., Sakly, A.: Comparison between P&O and PSO methods based MPPT algorithm for photovoltaic systems. In: 2015 16th International conference on sciences and techniques of automatic control and computer engineering (STA). IEEE (2015)

  115. Seyedmahmoudian, M., et al.: Simulation and hardware implementation of new maximum power point tracking technique for partially shaded PV system using hybrid DEPSO method.". IEEE Trans. Sustain. Energy 6(3), 850–862 (2015)

    Article  Google Scholar 

  116. Çelik, Ö., Teke, A.: A hybrid MPPT method for grid connected photovoltaic systems under rapidly changing atmospheric conditions. Electr. Power Syst. Res. 152, 194–210 (2017)

    Article  Google Scholar 

  117. Khanaki, R., Radzi, M.A.M., Marhaban, M.H.: Comparison of ANN and P&O MPPT methods for PV applications under changing solar irradiation. In: 2013 IEEE conference on clean energy and technology (CEAT). IEEE (2013)

  118. Karatepe, E., Hiyama, T.: Artificial neural network-polar coordinated fuzzy controller based maximum power point tracking control under partially shaded conditions. IET Renew. Power Gener. 3(2), 239–253 (2009)

    Article  Google Scholar 

  119. Rahman, M.M.A., Rahim, A.H.M.A.: Performance evaluation of ANN and ANFIS based wind speed sensor-less MPPT controller. In: 2016 5th International conference on informatics, electronics and vision (ICIEV). IEEE (2016)

  120. Priyadarshi, N., et al.: An experimental estimation of hybrid ANFIS–PSO-based MPPT for PV grid integration under fluctuating sun irradiance. IEEE Syst. J. 14(1), 1218–1229 (2019)

    Article  MathSciNet  Google Scholar 

  121. Hamdi, H., Regaya, C.B., Zaafouri, A.: Real-time study of a photovoltaic system with boost converter using the PSO-RBF neural network algorithms in a MyRio controller. Sol. Energy 183, 1–16 (2019)

    Article  Google Scholar 

  122. Sundareswaran, K., et al.: Development of an improved P&O algorithm assisted through a colony of foraging ants for MPPT in PV system. IEEE Trans. Ind. Inform. 12(1), 187–200 (2015)

    Article  MathSciNet  Google Scholar 

  123. Pilakkat, D., Kanthalakshmi, S.: An improved P&O algorithm integrated with artificial bee colony for photovoltaic systems under partial shading conditions. Sol. Energy 178, 37–47 (2019)

    Article  Google Scholar 

  124. Ge, X., et al.: Implementation of a novel hybrid BAT-fuzzy controller based MPPT for grid-connected PV-battery system. Control Eng. Pract. 98, 104380 (2020)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mohammad Sarvi.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sarvi, M., Azadian, A. A comprehensive review and classified comparison of MPPT algorithms in PV systems. Energy Syst 13, 281–320 (2022). https://doi.org/10.1007/s12667-021-00427-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12667-021-00427-x

Keywords

Navigation