Skip to main content
Log in

Impaired coronary blood flow may be related to elevated homocysteine levels in patients with metabolic syndrome

  • original article
  • Published:
Wiener klinische Wochenschrift Aims and scope Submit manuscript

A Correction to this article was published on 07 May 2018

This article has been updated

Summary

Background

Metabolic syndrome (MS) refers to a group of cardiovascular risk factors associated with endothelial dysfunction and impaired coronary blood flow (CBF). Homocysteine (Hcy) is another risk factor for the development of insulin resistance and endothelial dysfunction. However, the relationship between Hcy levels and CBF in patients with MS has not been investigated specifically. In the present study, we aimed to evaluate the relationship between Hcy levels and CBF in MS patients with normal coronary arteries.

Methods

The study population included 36 patients with MS (20 males, 16 females; mean age = 55 ± 9 years) and 36 control subjects (20 males, 16 females; mean age = 51 ± 7 years). All subjects had angiographically proven normal coronary arteries. Plasma Hcy concentrations were evaluated after a fast of 12 h or longer. The CBF rates of all subjects were documented by the thrombolysis in myocardial infarction (TIMI) frame count method.

Results

The TIMI frame counts for each major epicardial coronary artery and mean TIMI frame count were found to be significantly higher in the MS group compared with the control group (left anterior descending coronary artery (LAD): 53 ± 26 vs. 39 ± 17; p = 0.01, left circumflex artery (LCx): 32 ± 12 vs. 26 ± 11; p = 0.01, right coronary artery (RCA): 33 ± 14 vs. 26 ± 12; p = 0.02, mean TIMI frame count: 39 ± 16 vs. 20 ± 12; p = 0.01). Plasma Hcy levels in patients with MS were significantly higher compared with controls (MS group = 11.6 ± 4 and control group = 9.6 ± 2.6; p = 0.01). Additionally, plasma Hcy levels were positively correlated with each calculated TIMI frame count value in the MS group (LAD, r: 0.28 and p = 0.006; LCx, r: 0.25 and p = 0.022; RCA, r: 0.26 and p = 0.042; mean TIMI frame count, r: 0.28 and p = 0.004).

Conclusion

Plasma Hcy levels and TIMI frame counts were significantly higher in patients with MS. Impaired CBF in MS may be related to elevated levels of Hcy, even if Hcy levels are normal.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

Change history

  • 07 May 2018

    Correction to:

    Wien Klin Wochenschr 2015

    https://doi.org/10.1007/s00508-015-0854-z

    The original version of this article unfortunately contained a mistake. The first names of Dr. Ismail Dogu Kilic were interchanged.

References

  1. Ninomiya JK, L’Italien G, Criqui MH, Whyte JL, Gamst A, Chen RS. Association of the metabolic syndrome with history of myocardial infarction and stroke in the third national health and nutritional examination survey. Circulation. 2004;109:42–6.

    Article  PubMed  Google Scholar 

  2. Quiñones MJ, Hernandez-Pampaloni M, Schelbert H, Bulnes-Enriquez I, Jimenez X, Hernandez G, De La, Rosa R, Chon Y, Yang H, Nicholas SB, Modilevsky T, Yu K, Van Herle K, Castellani LW, Elashoff R, Hsueh WA. Coronary vasomotor abnormalities in insulin-resistant individuals. Ann Intern Med. 2004;140:700–8.

    Article  PubMed  Google Scholar 

  3. Pırat B, Bozbaş H, Şimsek V, Yıldırır A, Sade LE, Gürsoy Y, Altın C, Atar I, Muderrisoglu H. Impaired coronary flow reserve in patients with metabolic syndrome. Atherosclerosis. 2008;201:112–6.

    Article  PubMed  Google Scholar 

  4. Turhan H, Erbay AR, Yasar AS, Bicer A, Sasmaz H, Yetkin E. Impaired coronary blood flow in patients with metabolic syndrome: documented by Thrombolysis in Myocardial Infarction (TIMI) frame count method. Am Heart J. 2004;148:789–94.

    Article  PubMed  Google Scholar 

  5. Gibson CM, Cannon CP, Daley WL, et al. TIMI frame count: a quantitative method of assessing coronary artery flow. Circulation. 1996;93:879–88.

    Article  CAS  PubMed  Google Scholar 

  6. Meigs JB, Jacques PF, Selhub J, Singer DE, Nathan DM, Rifai N, D’Agostino RB Sr, Wilson PW. Framingham offspring study. Fasting plasma homocysteine levels in the insulin resistance syndrome: the Framingham offspring study. Diabetes Care. 2001;24:1403–10.

    Article  CAS  PubMed  Google Scholar 

  7. Virtanen JK, Voutilainen S, Alfthan G, Korhonen MJ, Rissanen TH, Mursu J, Kaplan GA, Salonen JT. Homocysteine as a risk factor for CVD mortality in men with other CVD risk factors: the Kuopio Ischaemic Heart Disease Risk Factors (KIHD) study. J Intl Med. 2005;257:255–62.

    Article  CAS  Google Scholar 

  8. Blom HJ. Consequences of homocysteine export and oxidation in the vascular system. Semin Thromb Hemost. 2000;26:227–32.

    Article  CAS  PubMed  Google Scholar 

  9. He L, Zeng H, Li F, Feng J, Liu S, Liu J, Yu J, Mao J, Hong T, Chen AF, Wang X, Wang G. Homocysteine impairs coronary artery endothelial function by inhibiting tetrahydrobiopterin in patients with hyperhomocysteinemia. Am J Physiol Endocrinol Metab. 2010;299:1061–5.

    Article  Google Scholar 

  10. Evrengul H, Tanriverdi H, Enli Y, Kuru O, Seleci D, Bastemir M, Kilic A, Kaftan A, Kilic M. Interaction of plasma homocysteine and thyroid hormone concentrations in the pathogenesis of the slow coronary flow phenomenon. Cardiology. 2007;108(3):186–92.

    Article  CAS  PubMed  Google Scholar 

  11. Evrengul H, Tanriverdi H, Kuru O, Enli Y, Yuksel D, Kilic A, Kaftan A, Kirac S, Kilic M. Elevated homocysteine levels in patients with slow coronary flow: relationship with Helicobacter pylori infection. Helicobacter. 2007;12:298–305.

    Article  CAS  PubMed  Google Scholar 

  12. Cockcroft DW, Gault MH. Prediction of creatinine clearance from serum creatinine. Nephron. 1976;16:31–41.

    Article  CAS  PubMed  Google Scholar 

  13. Matthews DR, Hosker JP, Rudenski AS, Naylor BA, Treacher DF, Turner RC. Homeostasis model assessment: insulin resistance and beta-cell function from fasting plasma glucose and insulin concentrations in man. Diabetologia. 1985;28:412–9.

    Article  CAS  PubMed  Google Scholar 

  14. Expert Panel on Detection, Evaluation, and Treatment of High Blood Cholesterol in Adults. Executive summary of the third report of the National Cholesterol Education Program (NCEP) expert panel on detection, evaluation, and treatment of high blood cholesterol in adults (Adult Treatment Panel III). JAMA. 2001;285:2486–96.

    Article  Google Scholar 

  15. Cetin M, Zencir C, Tasolar H, Baysal E, Balli M, Akturk E. The association of serum albumin with coronary slow flow. Wien Klin Wochenschr. 2014;126:468–73.

    Article  CAS  PubMed  Google Scholar 

  16. Epstein SE, Cannon O, Talbot TL. Hemodynamic principles in the control of coronary blood flow. Am J Cardiol. 1985;56:4–10.

    Article  Google Scholar 

  17. Fabian E, Kickinger A, Wagner KH, Elmadfa I. Homocysteine and asymmetric dimethylarginine in relation to B vitamins in elderly people. Wien Klin Wochenschr. 2011;123:496–501.

    Article  CAS  PubMed  Google Scholar 

  18. Welch GN, Loscalzo J. Homocysteine and atherothrombosis. N Engl J Med. 1998;338:1042–50.

    Article  CAS  PubMed  Google Scholar 

  19. Lentz SR. Mechanisms of homocysteine-induced atherothrombosis. J Thromb Haemost. 2005;3:1646–54.

    Article  CAS  PubMed  Google Scholar 

  20. Cattaneo M. Hyperhomocysteinemia and thrombosis. Lipids. 2001;36:13–26.

    Article  Google Scholar 

  21. Hajer GR, van der Graaf Y, Olijhoek JK, Verhaar MC, Visseren FL; SMART Study Group. Levels of homocysteine are increased in metabolic syndrome patients but are not associated with an increased cardiovascular risk, in contrast to patients without the metabolic syndrome. Heart. 2007;93:216–20.

    Article  CAS  PubMed  Google Scholar 

  22. Björck J, Hellgren M, Rastam L, Lindblad U. Associations between serum insulin and homocysteine in a Swedish population-a potential link between the metabolic syndrome and hyperhomocysteinemia: the Skaraborg project. Metabolism. 2006;55:1007–13.

    Article  PubMed  Google Scholar 

  23. Rosolova H, Simon J, Mayer O Jr, Racek J, Dierze T, Jacobsen DW. Unexpected inverse relationship between insulin resistance and serum homocysteine in healthy subjects. Physiol Res. 2002;51:93–8.

    CAS  PubMed  Google Scholar 

  24. Godsland IF, Rosankiewicz JR, Proudler AJ, Johnston DG. Plasma total homocysteine concentrations are unrelated to insulin sensitivity and components of the metabolic syndrome in healthy men. J Clin Endocrinol Metab. 2001;86:719–23.

    CAS  PubMed  Google Scholar 

  25. Chico A, Pérez A, Córdoba A, Arcelús R, Carreras G, de Leiva A, González-Sastre F, Blanco-Vaca F. Plasma homocysteine is related to albumin excretion rate in patients with diabetes mellitus: a new link between diabetic nephropathy and cardiovascular disease? Diabetologia. 1998;41:684–93.

    Article  CAS  PubMed  Google Scholar 

  26. Audelin MC, Genest J Jr. Homocysteine and cardiovascular disease in diabetes mellitus. Atherosclerosis. 2001;159:497–511.

    Article  CAS  PubMed  Google Scholar 

  27. Ubbink JB, Vermaak WJ, van der Merwe A, Becker PJ. Vitamin B-12, vitamin B-6, and folate nutritional status in men with hyperhomocysteinemia. Am J Clin Nutr. 1993;57:47–53.

    Article  CAS  PubMed  Google Scholar 

  28. Hayden MR, Tyagi SC. Homocysteine and reactive oxygen species in metabolic syndrome, type 2 diabetes mellitus, and atheroscleropathy: the pleiotropic effects of folate supplementation. Nutr J. 2004;3:1–23.

    Article  Google Scholar 

  29. Sezgin N, Barutcu I, Sezgin AT, Gullu H, Turkmen M, Esen AM, Karakaya O. Plasma nitric oxide level and its role in slow coronary flow phenomenon. Int Heart J. 2005;46:373–82.

    Article  CAS  PubMed  Google Scholar 

  30. Tanriverdi H, Evrengul H, Enli Y, Kuru O, Seleci D, Tanriverdi S, Tuzun N, Kaftan HA, Karabulut N. Effect of homocysteine-induced oxidative stress on endothelial function in coronary slow-flow. Cardiology. 2007;107:313–20.

    Article  CAS  PubMed  Google Scholar 

  31. Arnett EN, Isner JM, Redwood DR, Kent KM, Baker WP, Ackerstein H, Roberts WC, et al. Coronary artery narrowing in coronary heart disease: comparison of cineangiographic and necropsy findings. Ann Intern Med. 1979;91:350–6.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yusuf I. Alihanoglu MD.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Alihanoglu, Y., Yildiz, B., Özcan, E. et al. Impaired coronary blood flow may be related to elevated homocysteine levels in patients with metabolic syndrome. Wien Klin Wochenschr 127, 864–870 (2015). https://doi.org/10.1007/s00508-015-0854-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00508-015-0854-z

Keywords

Navigation