Skip to main content
Log in

Homocysteine and asymmetric dimethylarginine in relation to B vitamins in elderly people

Homocystein und asymmetrisches Dimethylarginin unter Berücksichtigung von B-Vitaminen bei älteren Menschen

  • Original article
  • Published:
Wiener klinische Wochenschrift Aims and scope Submit manuscript

Zusammenfassung

ZIELSETZUNG: Homocystein ist ein kardiovakulärer Risikofaktor, dessen Metabolismus von bestimmten B-Vitaminen beeinflusst und der mit dem Auftreten endothelialer Dysfunktion assoziiert wird. Diese ist möglicherweise auf die verringerte NO-Bioverfügbarkeit, bedingt durch eine Homocystein-induzierte Akkumulation von asymmetrischem Dimethylarginin (ADMA), zurückzuführen. Basierend auf diesem Hintergrund war es Ziel der vorliegenden Studie, die kardiovaskulären Risikofaktoren Homocystein und ADMA unter Berücksichtigung der Vitamine B6, B12 und Folat bei älteren Menschen zu untersuchen. METHODEN: Es wurden insgesamt 102 Probanden rekrutiert und in drei Altersgruppen eingeteilt: A (70–74J, n = 48), B (75–79J, n = 35) und C (≥80J, n = 19). Die Plasmaspiegel an Vitamin B6 und Homocystein wurden mittels HPLC, jene an Vitamin B12 und Folat mittels RIA analysiert. Die Plasmakonzentrationen an ADMA wurden mittels ELISA bestimmt. RESULTATE: Die Plasmaspiegel an Vitamin B6, B12 und Folat konnten bei 93 %, 67 % bzw. 55 % der Studienteilnehmer als adäquat eingestuft werden. Mit zunehmendem Alter zeigte sich eine signifikante Verringerung der Vitaminspiegel (B6: A > B, A > C: p < 0,05; B12 und Folat: A > C: p < 0,05), welche von einem Anstieg der kardiovaskulären Risikofaktoren Homocystein (A < C, B < C: p < 0,05) und ADMA (A < B: p < 0,05; A < C: p < 0,001) begleitet wurde. Weiters wurden signifikant (p < 0,01) negative Korrelationen zwischen Homocystein und Vitamin B6, B12 und Folat, sowie eine signifikant positive Assoziation zwischen Homocystein und ADMA erfasst (p < 0,01). SCHLUSSFOLGERUNGEN: Die signifikante Korrelation zwischen Homocystein und ADMA könnte ein wichtiger Mechanismus sein, der zu einer reduzierten NO-Bioverfügbarkeit und somit zur endothelialen Dysfunktion beiträgt. Basierend auf der signifikanten Beziehung zwischen Vitamin B6, B12 und Folat und dem Homocysteinspiegel, könnten diese Vitamine indirekt einen Einfluss auf die Endothelfunktion und somit das kardiovaskuläre Risiko bei älteren Menschen nehmen.

Summary

OBJECTIVE: Homocysteine is a cardiovascular risk factor, its metabolism is influenced by certain B vitamins and it is associated with endothelial dysfunction probably due to impaired bioavailability of NO caused by homocysteine-induced accumulation of asymmetric dimethylarginine (ADMA), an endogenous inhibitor of NO synthase. On this basis, we investigated the cardiovascular risk factors homocysteine and ADMA in relation to vitamins B6, B12 and folate in elderly people. METHODS: A total of 102 subjects were recruited and divided into three groups according to age: A (70–74y, n = 48), B (75–79y, n = 35) and C (≥80y, n = 19). Plasma levels of vitamin B6 were determined with HPLC, vitamin B12 and folate by RIA. Plasma concentrations of homocysteine were analyzed with HPLC and levels of ADMA were measured by ELISA. RESULTS: Plasma levels of vitamins B6, B12 and folate were found to be adequate in 93, 67 and 55% of participants, respectively. This study showed a significant age-associated decrease in vitamins B6 (A > B, A > C: p < 0.05), B12 and folate (A > C: p < 0.05) in parallel to a significant age-related increase in the cardiovascular risk factors homocysteine (A < C, B < C: p < 0.05) and ADMA (A < B: p < 0.05; A < C: p < 0.001). Moreover, homocysteine was significantly negatively (p < 0.01) related to vitamins B6, B12 and folate, and significantly positively (p < 0.01) correlated to ADMA. CONCLUSIONS: The significant correlation between homocysteine and ADMA observed in this study may be an important mechanism decreasing NO bioavailability and so causing endothelial dysfunction. Due to the significant relation of vitamins B6, B12 and folate to plasma homocysteine, these vitamins may thus indirectly influence endothelial function and cardiovascular risk in elderly people.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

References

  • World Health Organization. Cardiovascular diseases. WHO, Geneva; 2007

  • Refsum H, Smith A, Ueland PM, Nexo E, Clarke R, McPartlin J, Johnston C, Engbaek F, Schneede J, McPatlin C, Scott JM. Facts and recommendations about total homocysteine determinations: an expert opinion. Clin Chem 2004;50(1):3–32

    Article  PubMed  CAS  Google Scholar 

  • Giles WH, Croft JB, Greenlund KJ, Ford ES, Kittner SJ. Association between total homocyst(e)ine and the likelihood for a history of acute myocardial infarction by race and ethnicity: results from the third national health and nutrition examination survey. Am Heart J 2000;139(3):446–53

    Article  PubMed  CAS  Google Scholar 

  • Whincup PH, Refsum H, Perry IJ, Morris R, Walker M, Lennon L, Thomson A, Ueland P, Ebrahim S. Serum total homocysteine and coronary heart disease: prospective study in middle aged men. Heart 1999;82(4):448–54

    PubMed  CAS  Google Scholar 

  • Boushey CJ, Beresford SA, Omenn GS, Motulsky AG. A quantitative assessment of plasma homocysteine as a risk factor for vascular disease. Probable benefits of increasing folic acid intakes. JAMA 1995;274(13):1049–57

    Article  PubMed  CAS  Google Scholar 

  • Castro R, Rivera I, Blom HJ, Jakobs C, Tavares de Almeida I. Homocysteine metabolism, hyperhomocysteinaemia and vascular disease: an overview. J Inherit Metab Dis 2006;29(1):3–20

    Article  PubMed  CAS  Google Scholar 

  • Selhub J. Homocysteine metabolism. Annu Rev Nutr 1999;19:217–46

    Article  PubMed  CAS  Google Scholar 

  • Kahn R, Robertson RM, Smith R, Eddy D. The impact of prevention on reducing the burden of cardiovascular disease. Diabetes Care 2008;31(8):1686–96

    Article  PubMed  Google Scholar 

  • Malinow MR, Bostom AG, Krauss RM. Homocyst(e)ine, diet and cardiovascular diseases: a statement for healthcare professionals from the Nutrition Committee, American Heart Association. Circulation 1999;99(1):178–82

    PubMed  CAS  Google Scholar 

  • Tyagi N, Sedoris KC, Steed M, Ovechkin AV, Moshal KS, Tyagi SC. Mechanisms of homocysteine-induced oxidative stress. Am J Physiol Heart Circ Physiol 2005;289(6):H2649–56

    Article  PubMed  CAS  Google Scholar 

  • Sydow K, Schwedhelm E, Arakawa N, Bode-Böger SM, Tsikas D, Hornig B, Fröhlich JC, Böger RH. ADMA and oxidative stress are responsible for endothelial dysfunction in hyperhomocyst(e)inemia: effects of L-arginine and B vitamins. Cardiovasc Res 2003;57(1):244–52

    Article  PubMed  CAS  Google Scholar 

  • Bellamy MF, McDowell IFW, Ramsey MW, Brownlee M, Bones C, Newcombe RG, Lewis MJ. Hyperhomocysteinemia after an oral methionine load acutely impairs endothelial function in healthy adults. Circulation 1998;98(18):1848–52

    PubMed  CAS  Google Scholar 

  • Morris SM Jr. Arginine metabolism in vascular biology and disease. Vasc Med 2005;10(2):S83–7

    Article  PubMed  Google Scholar 

  • Leiper J, Vallance P. Biological significance of endogenous methylarginines that inhibit nitric oxide synthases. Cardiovasc Res 1999;43:542–8

    Article  PubMed  CAS  Google Scholar 

  • Vallance P, Leone A, Calver A, Collier J, Moncada S. Endogenous dimethylarginine as an inhibitor of nitric oxide synthesis. J Cardiovasc Pharmacol 1992;20(1):S60–2

    PubMed  CAS  Google Scholar 

  • Palm F, Onozato ML, Luo Z, Wilcox CS. Dimethylarginine dimethylaminohydrolase (DDAH): expression, regulation, and function in the cardivascular and renal systems. Am J Physiol Heart Circ Physiol 2007;293(6):H3227–45

    Article  PubMed  CAS  Google Scholar 

  • Teerlink T. ADMA metabolism and clearence. Vasc Med 2005;10(2):S73–81

    Article  PubMed  Google Scholar 

  • Jia SJ, Jiang DJ, Hu CP, Zhang XH, Deng HW, Li YJ. Lysophosphatidylcholine-induced elevation of asymmetric dimethylarginine level by the NADPH oxidase pathway in endothelial cells. Vascul Pharmacol 2006;44(3):143–8

    Article  PubMed  CAS  Google Scholar 

  • Stühlinger MC, Tsao PS, Her JH, Kimoto M, Balint RF, Cooke JP. Homocysteine impairs the nitric oxide synthase pathway: role of asymmetric dimethylarginine. Circulation 2001;104(21):2569–75

    Article  PubMed  Google Scholar 

  • Zhang WZ, Venardos K, Finch S, Kaye DM. Detrimental effect of oxidized LDL on endothelial arginine metabolism and transportation. Int J Biochem Cell Biol 2008;40(5):920–8

    Article  PubMed  CAS  Google Scholar 

  • Böger RH, Bode-Böger SM. Asymmetric dimethylarginine, derangements of the endothelial nitric oxide synthase pathway, and cardiovascular diseases. Semin Thromb Hemost 2000;26(5):539–45

    Article  PubMed  Google Scholar 

  • Ubbink JB, Hayward Vermaak WJ, Bissbort S. Rapid high-performance liquid chromatographic assay for total homocysteine levels in human serum. J Chormatography 1991;565(1–2):441–6

    Article  CAS  Google Scholar 

  • Edwards P, Liu PKS, Rose GA. A simple liquid-chromatographic method for measuring Vitamin B6 compounds in plasma. Clin Chem 1989;35(2):241–5

    PubMed  CAS  Google Scholar 

  • Sauberlich HE. Laboratory tests for the assessment of nutritional status, 2nd edn. CRC Press, Boca Raton, London, New York, Washington D.C 1999

    Google Scholar 

  • Rasmussen K, Moller J, Lyngbak M, Holm Pedersen AM, Dybkjær L. Age- and gender-specific reference intervals from total homocysteine and methylmalonic acid in plasma before and after vitamin supplementation. Clin Chem 1996;42(4):630–6

    PubMed  CAS  Google Scholar 

  • Stanger O, Herrmann W, Pietrzik K, Fowler B, Geisel J, Dierkes J, Weger M, on behalf of the DACH-Liga Homocystein e.V. DACH-LIGA Homocystein (German, Austrian and Swiss Homocysteine Society). Consensus Paper on the rational clinical use of homocysteine, folic acid and B-vitamins in cardiovascular and thrombotic disease: guidelines and recommendations. Clin Chem Lab Med 2003;42(11):1392–403

    Article  Google Scholar 

  • McKinley MC. Nutritional aspects and possible pathological mechanisms of hyperhomocysteinemia: an independent risk factor for vascular disease. Proc Nutr Soc 2000;59(2):221–37

    Article  PubMed  CAS  Google Scholar 

  • Selhub J, Jacques PF, Rosenberg IH, Rogers G, Bowman BA, Gunter EW, Wright JD, Johnson CL. Serum total homocysteine concentrations in the Third National Health and Nutrition Examination Survey (1991–1994): Population reference ranges and contribution of vitamin status to high serum concentrations. Ann Intern Med 1999;131(5):331–4

    PubMed  CAS  Google Scholar 

  • DACH Reference Values for Nutrient Intake. Ed. German Nutrition Society, Austrian Nutrition Society, Swiss Society for Nutrition Research, Swiss Nutrition Association. Umschau Braums, Frankfurt/Main, Germany, 2003

  • Eikelboom JW, Lonn E, Genest JJ, Hankey G, Yusuf S. Homocyst(e)ine and cardiovascular disease: a critical review of the epidemiologic evidence. Ann Intern Med 1999;131(5):363–75

    PubMed  CAS  Google Scholar 

  • Graham I. Homocysteine in health and disease. Ann Intern Med 1999;131(5):387–8

    PubMed  CAS  Google Scholar 

  • Lopez JB, Peng CL. Plasma homocysteine reference values of adult Malaysians from three ethnic groups. Clin Chim Acta 2004;340(1–2):235–8

    Article  PubMed  CAS  Google Scholar 

  • De Bree A, Verschuren WM, Kromhout D, Kluijtmans LA, Blom HJ. Homocysteine determinants and the evidence to what extent homocysteine determines the risk of coronary heart disease. Pharmacol Rev 2002;54(4):599–618

    Article  PubMed  CAS  Google Scholar 

  • Doshi SN, Moat SJ, McDowell IF, Lewis MJ, Goodfellow J. Lowering plasma homocysteine with folic acid in cardiovascular disease: what will the trials tell us? Atherosclerosis 2002;165(1):1–3

    Article  PubMed  CAS  Google Scholar 

  • Clarke R, Daly L, Robinson K, Naughten E, Cahalane S, Fowler B, Graham I. Hyperhomocysteinemia: an independent risk factor for vascular disease. N Engl J Med 1991;324(17):1149–55

    Article  PubMed  CAS  Google Scholar 

  • Clarke R, Lewington S, Donald A, Johnston C, Refsum H, Stratton I, Jacques P, Breteler MM, Holman R. Underestimation of the importance of homocysteine as a risk factor for cardiovascular disease in epidemiological studies. J Cardiovasc Risk 2001;8(6):363–9

    Article  PubMed  CAS  Google Scholar 

  • Ganji V, Kafai MR. Population reference values for plasma total homocysteine concentrations in US adults after the fortification of cereals with folic acid. Am J Clin Nutr 2006;84(5):989–94

    PubMed  CAS  Google Scholar 

  • McGill HC Jr, McMahan CA, Herderick EE, Malcom GT, Tracy RE, Strong JP. Origin of atherosclerosis in childhood and adolescence. Am J Clin Nutr 2000;72(5):1307S–15

    PubMed  CAS  Google Scholar 

  • Meleady R, Ueland PM, Blom H, Whitehead AS, Refsum H, Daly LE, Vollset SE, Donohue C, Giesendorf B, Graham IM, Ulvik A, Zhang Y, Bjorke Monsen AL. Thermolabile methylenetetrahydrofolate reductase, homocysteine, and cardiovascular disease risk: European Concerted Action Project. Am J Clin Nutr 2003;77(1):63–70

    PubMed  CAS  Google Scholar 

  • Al-Obaidi MK, Philippou H, Stubbs PJ, Adami A, Amersey R, Noble MM, Lane DA. Relationship between homocysteine, factor VIIa, and thrombin generation in acute coronary syndromes. Circulation 2000;101:372–7

    PubMed  CAS  Google Scholar 

  • Bolton SJ, McNulty CA, Thomas RJ, Hewitt CR, Wardlaw AJ. Expression of and functional responses to protease-activated receptor on human eosinophils. J Leukoc Biol 2003;74(1):60–8

    Article  PubMed  CAS  Google Scholar 

  • Zhang X, Li H, Jin H, Ebin Z, Brodsky S, Goligorsky MS. Effects of homocysteine on endothelial nitric oxide production. Am J Physiol Renal Physiol 2000;279 (4):F671–8

    PubMed  CAS  Google Scholar 

  • Tsen CM, Hsieh CC, Yen CH, Lau YT. Homocysteine altered ROS generation and NO accumulation in endothelial cells. Chin J Physiol 2003;46(3):129–36

    PubMed  CAS  Google Scholar 

  • Nordberg J, Arner ES. Reactive oxygen species, antioxidants, and the mammalian thioredoxin system. Free Radic Biol Med 2001;31(11):1287–312

    Article  PubMed  CAS  Google Scholar 

  • Jin L, Abou-Mohamed G, Caldwell RB, Caldwell RW. Endothelial cell dysfunction in a model of oxidative stress. Med Sci Monit 2001;7(4):585–91

    PubMed  CAS  Google Scholar 

  • Beckman JS, Koppenol WH. Nitric oxide, superoxide, and peroxynitrite: the good, the bad, and the ugly. Am J Physiol Cell Physiol 1996;271:C1424–37

    CAS  Google Scholar 

  • Topal G, Brunet A, Millanvoye E, Boucher JL, Render F, Devynck MA, David-Dufilho M. Homocysteine induces oxidative stress by uncoupling of NO synthase activity through reduction in tetrahydrobiopterin. Free Rad Biol Med 2004;36(12):1532–41

    Article  PubMed  CAS  Google Scholar 

  • Fabian E, Bogner M, Elmadfa I. Age-Related Modification of Antioxidant Enzyme Activities in Relation to Cardiovascular Risk Factors. Eur J Clin Invest 2011 (in press)

  • Leopold JA, Loscalzo J. Oxidative risk for atherothrombotic cardiovascular disease. Free Radic Biol Med 2009; 47(12):1673–706

    Article  PubMed  CAS  Google Scholar 

  • Tran CT, Leiper JM, Vallance P. The DDAH/ADMA/NOS pathway. Athersocler Suppl 2003;4(4):33–40

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Elisabeth Fabian.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Fabian, E., Kickinger, A., Wagner, KH. et al. Homocysteine and asymmetric dimethylarginine in relation to B vitamins in elderly people. Wien Klin Wochenschr 123, 496–501 (2011). https://doi.org/10.1007/s00508-011-0002-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00508-011-0002-3

Keywords

Navigation