Skip to main content
Log in

Quantification and assessment of heat and cold waves in Novi Sad, Northern Serbia

  • Original Paper
  • Published:
International Journal of Biometeorology Aims and scope Submit manuscript

Abstract

Physiologically equivalent temperature (PET) has been applied to the analysis of heat and cold waves and human thermal conditions in Novi Sad, Serbia. A series of daily minimum and maximum air temperature, relative humidity, wind, and cloud cover was used to calculate PET for the investigated period 1949–2012. The heat and cold wave analysis was carried out on days with PET values exceeding defined thresholds. Additionally, the acclimatization approach was introduced to evaluate human adaptation to interannual thermal perception. Trend analysis has revealed the presence of increasing trend in summer PET anomalies, number of days above defined threshold, number of heat waves, and average duration of heat waves per year since 1981. Moreover, winter PET anomaly as well as the number of days below certain threshold and number of cold waves per year until 1980 was decreasing, but the decrease was not statistically significant. The highest number of heat waves during summer was registered in the last two decades, but also in the first decade of the investigated period. On the other hand, the number of cold waves during six decades is quite similar and the differences are very small.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  • Aylin P, Morris S, Wakefield J, Grossinho A, Jaru L, Elliott P (2001) Temperature, housing, deprivation and their relationship to excess winter mortality in Great Britain, 1986–1996. Int J Epidemiol 30:1100–1108. doi:10.1093/ije/30.5.1100

    Article  CAS  Google Scholar 

  • Ballester F, Michelozzi P, Iniguez C (2003) Weather, climate, and public health. J Epidemiol Community Health 57:759–760

    Article  CAS  Google Scholar 

  • Ballester J, Giorgi F, Rodó J (2010) Changes in European temperature extremes can be predicted from changes in PDF central statistics: a letter. Clim Chang 98:277–284

    Article  Google Scholar 

  • Basarin B, Kržič A, Lazić L, Lukić T, Đorđević J, Janićijević Petrović B, Ćopić S, Matić D, Hrnjak I, Matzarakis A (2014) Evaluation of bioclimate conditions in two special nature reserves in Vojvodina (Northern Serbia). Carpathian J Earth Environ Sci 9:93–108

    Google Scholar 

  • Basu R, Samet JM (2002) Relation between elevated ambient temperature and mortality: a review of the epidemiologic evidence. Epidemiol Rev 24:190–202

    Article  Google Scholar 

  • Beniston M, Diaz H (2004) The 2003 heat wave as an example of summers in a greenhouse climate? Observations and climate model simulations for Basel, Switzerland. Glob Planet Chang 44:73–81

    Article  Google Scholar 

  • Boccolari M, Malmusi S (2013) Changes in temperature and precipitation extremes observed in Modena, Italy. Atmos Res 122:16–31

    Article  Google Scholar 

  • Bøkenes L, Alexandersen TE, Østerud B, Tveita T, Mercer JB (2000) Physiological and hematological responses to cold exposure in the elderly. Int J Circumpolar Health 59:216–221

    Google Scholar 

  • Bøkenes L, Alexandersen TE, Tveita T, Osterud B, Mercer JB (2004) Physiological and hematological responses to cold exposure in young subjects. Int J Circumpolar Health 63:115–128

    Article  Google Scholar 

  • Bouchama A, Knochel JP (2002) Heat stroke. N Engl J Med 346:1978–1988

    Article  CAS  Google Scholar 

  • Brown SJ, Caesar J, Ferro AT (2008) Global changes in daily extreme temperatures since 1950. J Geophys Res Atmos 113. doi:10.1029/2006JD008091

  • Christidis N, Stott P, Brown S, Hegerl G, Caesar J (2005) Detection of changes in temperature extremes during the second half of the 20th century. Geophys Res Lett 32. doi:10.1029/2005GL023885

  • Della-Marta PM, Haylock MR, Luterbacher J, Wanner H (2007) Doubled length of western European heat waves since 1880. J Geophys Res Atmos 112. doi:10.1029/2007JD008510

  • Dolney TJ, Sheridan SC (2006) The relationship between extreme heat and ambulance response calls for the city of Toronto, Ontario, Canada. Environ Res 101:94–103

    Article  CAS  Google Scholar 

  • Easterling DR, Evans JL, Groisman PY, Karl TR, Kunkel KE, Ambenje P (2000) Observed variability and trends in extreme climate events: a brief review. Bull Am Meteorol Soc 81:417–425

    Article  Google Scholar 

  • Fanger PO (1972) Thermal comfort: analysis and applications in environmental engineering. McGraw-Hill, New York

    Google Scholar 

  • Fouillet A, Rey G, Laurent F, Pavillon G, Bellec S, Guihenneuc-Jouyaux C, Clavel J, Jougla E, Hémon D (2006) Excess mortality related to the August 2003 heat wave in France. Int Arch Occup Environ Health 80:16–24

    Article  CAS  Google Scholar 

  • Frich P, Alexander LV, Della-Marta P, Gleason B, Haylock M, Klein Tank AMG, Peterson T (2002) Observed coherent changes in climatic extremes during the second half of the twentieth century. Clim Res 19:193–212

    Article  Google Scholar 

  • Gilbert RO (1987) Statistical methods for environmental pollution monitoring. Van Nostrand Reinhold, New York

    Google Scholar 

  • Giles BD, Balafoutis CJ (1990) The Greek heat waves of 1987 and 1988. Int J Climatol 10:505–517

    Article  Google Scholar 

  • Giles BD, Balafoutis C, Maheras P (1990) Too hot for comfort: the heat waves in Greece in 1987 and 1988. Int J Biometeorol 34:98–104

    Article  CAS  Google Scholar 

  • Hajat S, Kosatky T (2010) Heat-related mortality: a review and exploration of heterogeneity. J Epidemiol Community Health 64:753–760

    Article  Google Scholar 

  • Hajat S, Kovats RS, Atkinson RW, Haines A (2002) Impact of hot temperatures on death in London: a time series approach. J Epidemiol Community Health 56:367–372

    Article  CAS  Google Scholar 

  • Hajat S, Kovats RS, Lachowycz K (2007) Heat-related and cold-related deaths in England and Wales: who is at risk? Occup Environ Med 64:93–100

    Article  CAS  Google Scholar 

  • Heino R, Brázdil R, Førland E, Tuomenvirta H, Alexandersson H, Beniston M, Pfister C, Rebetez M, Rosenhagen G, Rösner S, Wibig J (1999) Progress in the study of climate extremes in northern and central Europe. In: Thomas KR, Nicholls N, Ghazi A (eds) Weather and climate extremes: changes, variations and a perspective from the insurance industry. Kluwer Academic, Dordrecht

    Google Scholar 

  • Höppe P (1999) The physiological equivalent temperature—a universal index for the biometeorological assessment of the thermal environment. Int J Biometeorol 43:71–75

    Article  Google Scholar 

  • Jacob D (2001) A note on the simulation of the annual and inter-annual variability of the water budget over the Baltic Sea drainage basin. Meteorol Atmos Phys 77:61–73

    Article  Google Scholar 

  • Jacob D, Bäring L, Christensen OB et al (2007) An inter-comparison of regional climate models for Europe: model performance in present-day climate. Clim Chang 81:31–52

    Article  Google Scholar 

  • Jendritzky G, Tinz B (2009) The thermal environment of the human being on the global scale. In: Kjellström T (ed) Heat, work and health: implications of climate change. Global Health Action 2:1–12

  • Jendritzky G, de Dear R, Havenith G (2012) UTCI—why another thermal index? Int J Biometeorol 56:421–428

    Article  Google Scholar 

  • Kalkstein LS (2000) Saving lives during extreme summer weather. BMJ 321:650–651

    Article  CAS  Google Scholar 

  • Kalkstein LS, Sheridan SC, Kalkstein AJ (2009) Heat/health warning systems: development, implementation, and intervention activities. In: Ebi KL et al. (eds) Biometeorology for adaptation to climate variability and change, 33 © Springer Science + Business Media

  • Karl TR, Trenberth KE (2003) Modern global climate change. Science 302:1719–1723

    Article  CAS  Google Scholar 

  • Klein Tank AMG, Können GP (2003) Trends indices of daily temperature and precipitation extremes in Europe, 1946–99. J Clim 16:3665–3680

    Article  Google Scholar 

  • Klein Tank AMG, Wijngaard JB, Konnen GP et al (2002) Daily dataset of 20th-century surface air temperature and precipitation series for the European climate assessment. Int J Climatol 22:1441–1453

    Article  Google Scholar 

  • Kodra E, Steinhaeuser K, Ganguly AR (2011) Persisting cold extremes under 21st-century warming scenarios. Geophys Res Lett 38. doi:10.1029/2011GL047103

  • Koppe C (2005) Gesundheitsrelevante Bewertung von thermischer Belastung unter Berücksichtigung der kurzfristigen Anpassung der Bevölkerung an die lokalen Witterungsverhältnisse. Berichte des Deutschen Wetterdienstes Nr. 226

  • Koppe C, Jendritzky G (2005) Inclusion of short-term adaption to thermal stresses in a heat load warning procedure. Meteorol Z 14:271–278

    Article  Google Scholar 

  • Kržič A, Tošić I, Djurdjević V, Veljović K, Rajković B (2011) Changes in climate indices for Serbia according to the SRES-A1B and -A2. Clim Res. doi:10.3354/cr01008

    Google Scholar 

  • Kuglitsch FG, Toreti A, Xoplaki E, Della-Marta PM, Zerefos CS, Türkeş M, Luterbacher J (2010) Heat wave changes in the eastern Mediterranean since 1960. Geophys Res Lett 37. doi:10.1029/2009GL041841

  • Kyselý J (2002) Probability estimates of extreme temperature events: stochastic modelling approach vs. extreme value distributions. Stud Geophys Geod 46:93–112

    Article  Google Scholar 

  • Kyselý J (2004) Mortality and displaced mortality during heat waves in the Czech Republic. Int J Biometeorol 49:91–97

    Article  Google Scholar 

  • Lin TP, Matzarakis A (2008) Tourism climate and thermal comfort in Sun Moon Lake, Taiwan. Int J Biometeorol 52:281–290

    Article  Google Scholar 

  • Makrogiannis T, Balafoutis Ch, Pytharoulis I (2008) The Heat Waves over Balkans as an indicator of the climate change: a case study on August 2006. In: Maheras P, Zanis P, Anagnostopoulou C et al. (eds) Proceedings of the 9th Conference of Meteorology, Climatology and Atmospheric Physics. Thessaloniki, Greece 417–423

  • Matzarakis A, Endler C (2010) Climate change and thermal bioclimate in cities: impacts and options for adaptation in Freiburg, Germany. Int J Biometeorol 54:479–483

    Article  Google Scholar 

  • Matzarakis A, Mayer H (1991) The extreme heat wave in Athens July 1987 from the point of view of human biometeorology. Atmos Environ 25:203–211

    Article  Google Scholar 

  • Matzarakis A, Mayer H (1996) Another kind of environmental stress: thermal stress. WHO News 18:7–10

    Google Scholar 

  • Matzarakis A, Mayer H (1997) Heat stress in Greece. Int J Biometeorol 41:34–39

    Article  CAS  Google Scholar 

  • Matzarakis A, Nastos PT (2011) Human-biometeorological assessment of heat waves in Athens. Theor Appl Climatol 105:99–106

    Article  Google Scholar 

  • Matzarakis A, Mayer H, Iziomon MG (1999) Applications of a universal thermal index: physiological equivalent temperature. Int J Biometeorol 43:76–84

    Article  CAS  Google Scholar 

  • Matzarakis A, Rutz F, Mayer H (2007) Modelling Radiation fluxes in simple and complex environments—application of the RayMan model. Int J Biometeorol 51:323–334

    Article  Google Scholar 

  • Matzarakis A, Muthers S, Koch E (2011) Human biometeorological evaluation of heat-related mortality in Vienna. Theor Appl Climatol 105:1–10

    Article  Google Scholar 

  • Matzarakis A, Rammelberg J, Junk J (2013) Assessment of thermal bioclimate and tourism climate potential for central Europe—the example of Luxembourg. Theor Appl Climatol 114:193–202

    Article  Google Scholar 

  • Mayer H, Höppe P (1987) Thermal comfort of man in different urban environments. Theor Appl Climatol 38:43–49

    Article  Google Scholar 

  • Meehl GA, Tebaldi C, Nychka D (2004) Changes in frost days in simulations of twenty-first century climate. Clim Dyn 23:495–511. doi:10.1007/s00382-004-0442-9

    Article  Google Scholar 

  • Muthers S, Matzarakis A, Koch E (2010) Climate change and mortality in Vienna—a human biometeorological analysis based on regional climate modeling. Int J Environ Res Public Health 7:2965–2977

    Article  Google Scholar 

  • Nastos PT, Matzarakis A (2012) The effect of air temperature and human thermal indices on mortality in Athens, Greece. Theor Appl Climatol 108:591–599

    Article  Google Scholar 

  • Pantavou K, Theoharatos G, Nikolopoulos G, Katavoutas G, Asimakopoulos D (2008) Evaluation of thermal discomfort in Athens territory and its effect on the daily number of recorded patients at hospitals’ emergency rooms. Int J Biometeorol 52:773–778

    Article  Google Scholar 

  • Parmesan C, Root TL, Willig MR (2000) Impacts of extreme weather and climate on terrestrial biota. Bull Am Meteorol Soc 81:443–450

    Article  Google Scholar 

  • Peterson TC, Heim RR Jr, Hirsch R et al (2013) Monitoring and understanding changes in heat waves, cold waves, floods, and droughts in the United States: state of knowledge. Bull Am Meteorol Soc 94:821–834

    Article  Google Scholar 

  • Pickup J, de Dear R (2000) An outdoor thermal comfort index (OUT_SET*)—part I—the model and its assumptions. In: de Dear R, Kalma J, Oke T, Auliciems A (ed) Biometeorology and urban climatology at the turn of the millennium. Selected papers from the Conference ICB-ICUC’99 (Sydney, 8–12 Nov. 1999). WMO, Geneva, WCASP 50:279–283

  • Räisänen J, Ylhäisi JS (2011) Cold months in a warming climate. Geophys Res Lett 38, L22704. doi:10.1029/2011GL049758

    Article  Google Scholar 

  • Ramos AM, Trigo RM, Santo FE (2011) Evolution of extreme temperatures over Portugal: recent changes and future scenarios. Clim Res 48:177–192

    Article  Google Scholar 

  • Robeson SM (2004) Trends in time‐varying percentiles of daily minimum and maximum temperature over North America. Geophys Res Lett 31, L04203. doi:10.1029/2003GL019019

    Article  Google Scholar 

  • Robinson JP (2001) On the definition of a heat wave. J Appl Meteorol 40:762–775

    Article  Google Scholar 

  • Schär C, Vidale PL, Lüthi D, Frei C, Häberli C, Liniger M, Appenzeller C (2004) The role of increasing temperature variability in European summer heatwaves. Nature 427:332–336

    Article  Google Scholar 

  • Staiger H, Laschewski G, Grätz A (2012) The perceived temperature—a versatile index for the assessment of the human thermal environment. Scientific basics. Part A. Int J Biometeorol 56:165–176. doi:10.1007/S00484-011-0409-6

    Article  Google Scholar 

  • Stott PA, Stone DA, Allen MR (2004) Human contribution to the European heat wave of 2003. Nature 432:610–614

    Article  CAS  Google Scholar 

  • Thorsson S, Lindberg F, Eliasson I, Holmer B (2007) Different methods for estimating the mean radiant temperature in an outdoor urban setting. Int J Climatol 27:1983–1993

    Article  Google Scholar 

  • Unal YS, Tan E, Mentes SS (2013) Summer heat waves over western Turkey between 1965 and 2006. Theor Appl Climatol 112:339–350

    Article  Google Scholar 

  • Unkašević M, Tošić I (2009) An analysis of heat waves in Serbia. Glob Planet Chang 65:17–26. doi:10.1016/j.gloplacha.2008.10.009

    Article  Google Scholar 

  • Unkašević M, Tošić I (2011) The maximum temperatures and heat waves in Serbia during the summer of 2007. Clim Chang 108:207–223

    Article  Google Scholar 

  • Unkašević M, Tošić I (2013) Trends in temperature indices over Serbia: relationships to large-scale circulation patterns. Int J Climatol 33:3152–3161. doi:10.1002/joc.3652

    Article  Google Scholar 

  • Unkašević M, Tošić I (2014) Seasonal analysis of cold and heat waves in Serbia during the period 1949–2012. Theor Appl Climatol. doi:10.1007/s00704-014-1154-7

    Google Scholar 

  • Vavrus SJ, Walsh JE, Chapman WL, Portis D (2006) The behavior of extreme cold air outbreaks under greenhouse warming. Int J Climatol 26:1133–1147

    Article  Google Scholar 

  • Wergen G, Krug J (2010) Record-breaking temperatures reveal a warming climate. EPL 92:30008. doi:10.1209/0295-5075/92/30008

    Article  Google Scholar 

  • Wijngaard JB, Klein Tank AMG, Konnen GP (2003) Homogeneity of 20th century European daily temperature and precipitation series. Int J Climatol 23:679–692

    Article  Google Scholar 

  • Wright W (2012) Calculation of the climate normals: proposal for a dual system. Meeting of the Commission for Climatology Expert Team on Climate Services Information System (Et‐Csis): Annex 6:38–40

  • Yan Z, Jones PD, Davies TD, Moberg A, Bergström H, Camuffo D, Cocheo C, Maugeri M, Demarée GR, Verhoeve T, Thoen E, Barriendos M, Rodríguez R, Martín-Vide J, Yang C (2002) Trends of extreme temperatures in Europe and China based on daily observations. Clim Chang 53:355–392

    Article  Google Scholar 

  • Zaninović K, Matzarakis A (2009) The bioclimatological leaflet as a means conveying climatological information to tourists and the tourism industry. Int J Biometeorol 53:369–374

    Article  Google Scholar 

  • Zaninović K, Matzarakis A (2014) Impact of heat waves on mortality in Croatia. Int J Biometeorol 58:1135–1145. doi:10.1007/s00484-013-0706-3

    Article  Google Scholar 

Download references

Acknowledgments

This research was supported by Project 176020 of the Serbian Ministry of Education, Science and Technological Development.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Biljana Basarin.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Basarin, B., Lukić, T. & Matzarakis, A. Quantification and assessment of heat and cold waves in Novi Sad, Northern Serbia. Int J Biometeorol 60, 139–150 (2016). https://doi.org/10.1007/s00484-015-1012-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00484-015-1012-z

Keywords

Navigation