Skip to main content
Log in

Comparison and evaluation of uncertainties in extreme flood estimations of the upper Yangtze River by the Delta and profile likelihood function methods

  • Original Paper
  • Published:
Stochastic Environmental Research and Risk Assessment Aims and scope Submit manuscript

Abstract

Frequency calculation for extreme flood and methods used for its uncertainty estimation are popular subjects in hydrology research. In this study, uncertainties in extreme flood estimations of the upper Yangtze River were investigated using the Delta and profile likelihood function (PLF) methods, which were used to calculate confidence intervals of key parameters of the generalized extreme value distribution and quantiles of extreme floods. Datasets of annual maximum daily flood discharge (AMDFD) from six hydrological stations located in the main stream and tributaries of the upper Yangtze River were selected in this study. The results showed that AMDFD data from the six stations followed the Weibull distribution, which has a short tail and is bounded above with an upper bound. Of the six stations, the narrowest confidence interval can be detected in the Yichang station, and the widest interval was found in the Cuntan station. Results also show that the record length and the return period are two key factors affecting the confidence interval. The width of confidence intervals decreased with the increase of record length because more information was available, while the width increased with the increase of return period. In addition, the confidence intervals of design floods were similar for both methods in a short return period. However, there was a comparatively large difference between the two methods in a long return period, because the asymmetry of the PLF curve increases with an increase in the return period. This asymmetry of the PLF method is more proficient in reflecting the uncertainty of design flood, suggesting that PLF method is more suitable for uncertainty analysis in extreme flood estimations of the upper Yangtze River Basin.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  • Becker V, Schilling M, Bachmann J, Baumann U, Raue A, Maiwald T, Timmer J, Klinqmuller U (2010) Covering a broad dynamic range: information processing at the erythropoietin receptor. Science 328:1404–1408

    Article  CAS  Google Scholar 

  • Bernardara P, Schertzer D, Sauquet E, Tchiguirisnkaia I, Lang M (2008) The flood probability distribution tail: how heavy is it? Stoch Environ Res Risk Assess 22:107–122. doi:10.1007/s00477-006-0101-2

    Article  Google Scholar 

  • Bhunya PK, Jain SK, Ojha CSP, Agarwal A (2007) Simple parameter estimation technique for three-parameter generalized extreme value distribution. J Hydrol Eng 12(6):682–689

    Article  Google Scholar 

  • Bobee B (1973) Sample error of T-year events computed by fitting a Pearson type 3 distribution. Water Resour Res 9(5):1264–1270

    Article  Google Scholar 

  • Chen L, Singh VP, Guo S, Zhou J, Zhang J (2015) Copula-based method for multisite monthly and daily streamflow simulation. J Hydrol 528:369–384

    Article  Google Scholar 

  • Coles S (2001) An introduction to statistical modeling of extreme values. Springer, London

    Book  Google Scholar 

  • Coles SG, Dixon MJ (1999) Likelihood-based inference for extreme value models. Extremes 2(1):5–23

    Article  Google Scholar 

  • Gilli M, Kellezi E (2006) An application of extreme value theory for measuring financial risk. Comput Econ 27:207–228

    Article  Google Scholar 

  • Gu H, Yu Z, Wang G, Wang J, Ju Q, Yang C, Fan C (2015) Impact of climate change on hydrological extremes in the Yangtze River Basin, China. Stoch Env Res Risk A. 29:693–707

    Article  Google Scholar 

  • Hosking JRM (1990) L-moments: analysis and estimation of distributions using linear combinations of order statistics. J R Stat Soc B 52(1):105–124

    Google Scholar 

  • Hosking JRM, Wallis JR (1993) Some statistics useful in regional frequency analysis. Water Resour Res 29(2):271–281

    Article  Google Scholar 

  • Hosking JRM, Wallis JR (1997) Regional frequency analysis. Cambridge Unviersity Press, Cambridge

    Book  Google Scholar 

  • Hosking JRM, Wallis JR, Wood EF (1985) Estimation of the generalized extreme-value distribution by the method of probability-weighted moments. Technometrics 27(3):251–261

    Article  Google Scholar 

  • Hromadka TV II, Whitley RJ, Smith MJ (2011) Stability of confidence levels for flood frequencies using additional data. J Water Res Prot 3:228–234

    Article  Google Scholar 

  • Hu YM, Liang ZM, Liu YW, Zeng XF, Wang D (2015) Uncertainty assessment of estimation of hydrological design values. Stoch Environ Res Risk Assess 29(2):501–511

    Article  Google Scholar 

  • Huang W, Xu S, Nnaji S (2008) Evaluation of GEV model for frequency analysis of annual maximum water levels in the coast of United States. Ocean Eng 35(11–12):1132–1147

    Article  Google Scholar 

  • Huard D, Mailhot A, Duchesne S (2010) Bayesian estimation of intensity-duration-frequency curves and of the return period associated to a given rainfall event. Stoch Environ Res Risk Assess 24(3):337–347

    Article  Google Scholar 

  • Javelle P, Ouarda T, Lang M, Bobee B (2002) Development of regional flood-duration frequency curves based on the index-flood method. J Hydrol 258(1–4):249–259

    Article  Google Scholar 

  • Jenkinson AF (1955) The frequency distribution of the annual maximum (or minimum) values of meteorological elements. Q J R Meteorol Soc 81:158–171

    Article  Google Scholar 

  • Kjeldsen TR, Jones DA (2006) Prediction uncertainty in a median-based index flood method using L moments. Water Resour Res 42:W07414. doi:10.1029/2005WR004069

    Article  Google Scholar 

  • Kreutz C, Raue A, Kaschek D, Timmer J (2013) Profile likelihood in systems biology. FEBS J280:2564–2571. doi:10.1111/febs.12276

    Google Scholar 

  • Kuczera G (1999) Comprehensive at-site flood frequency analysis using Monte Carlo Bayesian inference. Water Resour Res 35(5):1551–1557

    Article  Google Scholar 

  • Kumar R, Chatterjee C (2005) regional flood frequency analysis using L-moments for north Brahmaputra region of India. J Hydrol Eng 10(1):1–7

    Article  Google Scholar 

  • Lee KS, Kim SU (2008) Identification of uncertainty in low flow frequency analysis using Bayesian MCMC method. Hydrol Process 22(12):1949–1964

    Article  Google Scholar 

  • Liang ZM, Chang WJ, Li BQ (2012) Bayesian flood frequency analysis in the light of model and parameter uncertainties. Stoch Environ Res Risk Assess 26:721–730

    Article  Google Scholar 

  • Liu P, Lin KR, Wei XJ (2015) A two-stage method of quantitative flood risk analysis for reservoir real-time operation using ensemble-based hydrologic forecasts. Stoch Env Res Risk A. 29:803–813

    Article  Google Scholar 

  • Loucks E, Oriel K, Heineman M (2005) Frequency characteristics of long-duration rainfall events. Impacts Glob Clim Change. doi:10.1061/40792(173)125

    Google Scholar 

  • Lu F, Wand H, Yan D, Zhang DD, Xiao WH (2013) Application of profile likelihood function to the uncertainty analysis of hydro meteorological extreme inference. Sci China Technol Sci 56(12):3151–3160

    Article  Google Scholar 

  • Madsen H, Rasmussen PF, Rosbjerg D (1997) Comparison of annual maximum series and partial duration series methods for modeling extreme hydrologic events 1. At-site modeling. Water Resour Res 33(4):746–757

    Google Scholar 

  • Martins ES, Stedinger JR (2000) Generalized maximum-likelihood generalizedextreme-value quantile estimators for hydrologic data. Water Resour Res 36(3):737–744

    Article  Google Scholar 

  • Merz B, Thieken AH (2005) Separating natural and epistemic uncertainty in flood frequency analysis. J Hydrol 309(1–4):114–132

    Article  Google Scholar 

  • Morrison JE, Smith JA (2002) Stochastic modeling of flood peaks using the generalized extreme value distribution. Water Resour Res 38(12):1305. doi:10.1029/2001WR000502

    Article  Google Scholar 

  • Murphy SA, Van der Vaart AW (2000) On profile likelihood. J Am Stat Assoc 95(450):449–465

    Article  Google Scholar 

  • Nguyen V, Tao D, Bourque A (2002) On selection of probability distributions for representing annual extreme rainfall series. Glob Solut Urban Drain. doi:10.1061/40644(2002)250

    Google Scholar 

  • Park JS (2005) A simulation-based hyper parameter selection for quantile estimation of the generalized extreme value distribution. Math Comput Simul 70(4):227–234

    Article  Google Scholar 

  • Prescott P, Walden AT (1980) Maximum likelihood estimation of the parameters of the generalized extreme-value distribution. Biometrika 67(3):723–724

    Article  Google Scholar 

  • Raue A, Kreutz C, Maiwald T (2009) Structural and practical identifiability analysis of partially observed dynamical models by exploiting the profile likelihood. Bioinformatics 25:1923–1929

    Article  CAS  Google Scholar 

  • Saf B (2009) Regional flood frequency analysis using L-moments for the west mediterranean region of turkey. Water Resour Manag 23:531–551

    Article  Google Scholar 

  • Schaber J (2012) Easy parameter identifiability analysis with COPASI. Biosystems 110:183–185

    Article  CAS  Google Scholar 

  • Schelker M, Raue A, Timmer J, Kreutz C (2012) Comprehensive estimation of input signals and dynamics in biochemical reaction networks. Bioinformatics 28:529–534

    Article  Google Scholar 

  • Shamir E, Georgakakos KP, Murphy M (2012) Frequency analysis of the 7-8 December 2010 extreme precipitation in the Panama Canal watershed. J Hydrol 480:136–148

    Article  Google Scholar 

  • Shao Q, Leratb J, Podger G, Dutta D (2014) Uncertainty estimation with bias-correction for flow series based on rating curve. J Hydrol 510:137–152

    Article  Google Scholar 

  • Siliverstovs B, Otsch R, Kemfert C, Jaeger CC, Haas A, Kremers H (2009) Climate change and modelling of extreme temperatures in Switzerland. Stoch Environ Res Risk Assess 24:311–326. doi:10.1007/s00477-009-0321-3

    Article  Google Scholar 

  • Smith JA (1987) Estimating the upper tail of flood frequency distributions. Water Resour Res 23(8):1657–1666

    Article  Google Scholar 

  • Virtanen A, Uusipaikka E (2008) Computation of profile likelihood-based confidence intervals for reference limits with covariates. Stat Med 27(7):1121–1132

    Article  CAS  Google Scholar 

  • Walshaw D (2000) Modelling extreme wind speeds in regions proneto hurricanes. J R Stat Soc Ser C 49(1):51–62

    Article  Google Scholar 

  • Yoon S, ChoW Heo JH, Kim CE (2010) A full Bayesian approach to generalized maximum likelihood estimation of generalized extreme value distribution. Stoch Environ Res Risk Assess 24(5):761–770

    Article  Google Scholar 

  • Zhang Q, Gu X, Singh VP, Xiao M, Chen X (2015) Evaluation of flood frequency under non-stationarity resulting from climatechange and human activities in the East River basin, China. J Hydro 527:565–575

    Article  Google Scholar 

  • Zong YQ, Chen XQ (2000) The 1998 Flood on the Yangtze, China. Nat Hazards 22(2):165–184

    Article  Google Scholar 

Download references

Acknowledgements

The research is financially supported by the National Basic Research Program of China (“973” Program) (Grant Nos.: 2013CB036406 and 2015CB452701) and the National Natural Science Foundation of China (Grant Nos.: 51679252 and 51379223).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kairong Lin.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, J., Lu, F., Lin, K. et al. Comparison and evaluation of uncertainties in extreme flood estimations of the upper Yangtze River by the Delta and profile likelihood function methods. Stoch Environ Res Risk Assess 31, 2281–2296 (2017). https://doi.org/10.1007/s00477-016-1370-z

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00477-016-1370-z

Keywords

Navigation