Skip to main content
Log in

An analysis of changes in flood quantiles at the gauge Neu Darchau (Elbe River) from 1875 to 2013

  • Original Paper
  • Published:
Stochastic Environmental Research and Risk Assessment Aims and scope Submit manuscript

Abstract

Within this investigation, we focus on a detailed analysis of the discharge data of the gauge Neu Darchau (Elbe River). The Elbe River inflows onto the North Sea. The gauge Neu Darchau is the most downstream discharge gauge of the Elbe River before it becomes an estuary. We follow the questions, whether the discharge characteristics of the Elbe River have changed over the last decades and how much common flood quantiles (i.e. 100-year flood) are affected by the latest extreme events in 2002, 2006, 2011, and 2013. Hence, we conduct (i) trend and seasonality analysis and (ii) an assessment of time-dependencies of flood quantiles by using quasi non-stationary extreme value statistics with both block maxima and peak-over-threshold approaches. The (iii) significance of the changes found in flood quantiles are assessed by using a stochastic approach based on autoregressive models and Monte Carlo simulations. The results of the trend analyses do show no clear evidences for any significant trends in daily mean discharges and increasing flood frequencies. With respect to the extreme events in 2002, 2006, 2011, and 2013 our results reveal, that those events do not lead to extraordinary changes in the 100-year floods. Nevertheless, in the majority an increase in the 100-year floods over the recent decades can be stated. Although these changes are not significant, for many time series of the 100-year flood quantiles there is a clear tendency towards the upper confidence band.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  • Acero FJ, Garcia JA, Gallego MC (2011) Peaks-over threshold study of trends in extreme rainfall over the Iberian, Peninsula. J Clim 24:1089–1105

    Article  Google Scholar 

  • Bayliss, AC, Jones RC (1993) Peaks-over-threshold flood database: summary statistics and seasonality. Report No. 121. Institute of Hydrology, Wallingford

  • Bender J, Wahl T, Jensen J (2014) Multivariate design in the presence of non-stationarity. J Hydrol 514:123–130

    Article  Google Scholar 

  • Bender J, Mudersbach C, Jensen J (2015) Verwendung diskreter Abflusszeitreihen für die Ermittlung von Bemessungshochwasserabflüssen, Tagungsband 38. Dresdner Wasserbaukolloquium, Dresdner Wasserbauliche Mitteilungen

  • Beurton S, Thieken AH (2009) Seasonality of floods in Germany. Hydrol Sci J 54(1):62–76

    Article  Google Scholar 

  • Bormann H, Pinter N, Elfert S (2011) Hydrological signatures of flood trends on German rivers: flood frequencies, flood heights and specific stages. J Hydrol 404(1–2):50–66

    Article  Google Scholar 

  • Busch N, Balvin P, Hatz M, Krejci J (2012) Bewertung von Einflüssen tschechischer und thüringer Talsperren auf Hochwasser an Moldau und Elbe in Tschechien und Deutschland mittels Einsatz mathematischer Modelle, Technischer Bericht BfG-1725. Bundesanstalt für Gewässerkunde, Koblenz (in German)

    Google Scholar 

  • Casty C, Wanner H, Luterbacher J, Esper J, Bohm R (2005) Temperature and precipitation variability in the European Alps since 1500. Int J Climatol 25:1855–1880

    Article  Google Scholar 

  • Cleveland WS (1981) Lowess—a Program for smoothing scatter plots by robust locally weighted regression. Am Stat 35(1):54–54

    Article  Google Scholar 

  • Coles S (2001) An introduction to statistical modeling of extreme values. Springer, New York

    Book  Google Scholar 

  • Davison AC, Smith RL (1990) Models for exceedances over high thresholds (with discussion). J R Stat Soc B 52:393–442

    Google Scholar 

  • Feidas H, Noulopoulou C, Makrogiannis T, Bora-Senta E (2007) Trend analysis of precipitation time series in Greece and their relationship with circulation using surface and satellite data: 1955–2001. Theoret Appl Climatol 87:155–177

    Article  Google Scholar 

  • Hawkes PJ, Gonzalez-Marco D, Sánchez-Arcilla A, Prinos P (2008) Best practice for the estimation of extremes: A review. J Hydraul Res 46(Extra Issue 2):324–332

    Article  Google Scholar 

  • Hosking JRM (1984) Modeling persistence in hydrological time series using fractional differencing. Water Resour Res 20(12):1898–1908

    Article  Google Scholar 

  • Hosking JRM, Wallis JR (1997) Regional frequency analysis. Cambridge University-Press, Cambridge

    Book  Google Scholar 

  • Ionita M, Rimbu N, Lohmann G (2011) Decadal variability of the Elbe River streamflow. Int J Climatol 31(1):22–30

    Article  Google Scholar 

  • Kendall MG (1975) Rank correlation methods. Griffin, London

    Google Scholar 

  • Kingston DG, Lawler DM, McGregor GR (2006) Linkages between atmospheric circulation, climate and streamflow in the northern North Atlantic: research prospects. Prog Phys Geogr 30(2):143–174

    Article  Google Scholar 

  • Kropp JP, Schellnhuber HJ (2011) In extremis. Disruptive events and trends in climate and hydrology. Springer, Berlin

    Google Scholar 

  • Lang M, Ouarda TBMJ, Bobée B (1999) Towards operational guidelines for over-threshold modeling. J Hydrol 225:103–117

    Article  Google Scholar 

  • Leadbetter MR (1991) On a basis for ‘Peaks over Threshold modeling. Stat Probab Lett 12:357–362

    Article  Google Scholar 

  • Lohani AK, Kumar R, Singh RD (2012) Hydrological time series modeling: A comparison between adaptive neuro-fuzzy, neural network and autoregressive techniques. J Hydrol 442–443:23–35

    Article  Google Scholar 

  • Maidment DR (1992) Handbook of hydrology. MacGraw-Hill, New York

    Google Scholar 

  • Malamud BD, Turcotte DL (2012) Time series: analysis and modelling. In: John Wainwright und Mark Mulligan (Hg.): environmental modelling. Finding simplicity in complexity. 2nd ed. Wiley, Chichester

  • Mann HB (1945) Nonparametric tests against trend. Econometrica 13:245–259

    Article  Google Scholar 

  • Markovic D (2006) Interannual and interdecadal oscillations in hydrological variables: sources and modeling of the persistence in the Elbe River Basin. Dissertation: University of Kassel

  • Mendez F, Menendez M, Luceno A, Losada IJ (2007) Analyzing monthly extreme sea levels with a time-dependent GEV model. J Atmos Ocean Technol 24:894–911

    Article  Google Scholar 

  • Merz B, Bittner R, Grünewald U, Piroth K (2011) Management von Hochwasserrisiken. Mit Beiträgen aus den RIMAX-Forschungsprojekten. Schweizerbart, Stuttgart (in German)

  • Modarres R (2007) Streamflow drought time series forecasting. Stoch Environ Res Ris Assess 21(3):223–233

    Article  Google Scholar 

  • Mudelsee M (2004) Extreme floods in central Europe over the past 500 years: Role of cyclone pathway Zugstrasse Vb. J Geophys Res 109(D23):D23101

    Article  Google Scholar 

  • Mudelsee M, Börngen M, Tetzlaff G, Grünewald U (2003) No upward trends in the occurrence of extreme floods in central Europe. Nature 425:166–169

    Article  CAS  Google Scholar 

  • Mudersbach C, Jensen J (2010) Non-stationary extreme value analysis of annual maximum water levels for designing coastal structures at the German North Sea coastline. J Flood Risk Manag 3(1):52–62

    Article  Google Scholar 

  • Petrow T, Merz B (2009) Trends in flood magnitude, frequency and seasonality in Germany in the period 1951–2002. J Hydrol 371(1–4):129–141

    Article  Google Scholar 

  • Petrow T, Zimmer J, Merz B (2009) Changes in the flood hazard in Germany through changing frequency and persistence of circulation patterns. Natl Hazards Earth Syst Sci 9(4):1409–1423

    Article  Google Scholar 

  • Pociask-Karteczka J (2006) River hydrology and the north atlantic oscillation: a general review. AMBIO 35(6):312–314

    Article  Google Scholar 

  • Rosbjerg D, Madsen H (1992) On the choice of threshold level in partial durations series. In: XVII nordic hydrological conference, Alta. NHP Rep no. 30: 604–615

  • Salas JD (1980) Applied modeling of hydrologic time series. Water Resources Publication, Littleton

    Google Scholar 

  • Santos JA, Corte-Real J, Ulbrich U, Palutikof J (2007) European winter precipitation extremes and large-scale circulation: a coupled model and its scenarios. Theoret Appl Climatol 87:85–102

    Article  Google Scholar 

  • Serinaldi F, Kilsby CG (2015) Stationarity is undead: Uncertainty dominates the distribution of extremes. Adv Water Resour 77:17–36

    Article  Google Scholar 

  • Silva AT, Portela MM, Naghettini M (2014) On peaks-over-threshold modeling of floods with zero-inflated Poisson arrivals under stationarity and nonstationarity. Stoch Environ Res Risk Assess 28(6):1587–1599

    Article  Google Scholar 

  • Silva AT, Naghettini M, Portela MM (2015) On some aspects of peaks-over-threshold modeling of floods under nonstationarity using climate covariates. Stoch Environ Res Risk Assess. doi:10.1007/s00477-015-1072-y

  • Smith RL (1986) Extreme value theory based on the largest annual events. J Hydrol 86:27–43

    Article  Google Scholar 

  • Stahl K, Hisdal H, Hannaford J, Tallaksen LM, van Lanen HAJ, Sauquet E (2010) Streamflow trends in Europe: evidence from a dataset of near-natural catchments. Hydrol Earth Syst Sci 14:2367–2382

    Article  Google Scholar 

  • Svensson C, Kundzewicz ZW, Maurer T (2005) Trend detection in river flow series: 2. Flood and low-flow index series. Hydrol Sci J 50(5):824

    Article  Google Scholar 

  • Svensson C, Hannaford J, Kundzewicz ZW, Marsh T (2006) Trends in river floods: why is there no clear signal in observations? In: Tchiguirinskaia I, Thein K (eds) Frontiers in flood research. IAHS, Wallingford

    Google Scholar 

  • Villarini G, Smith JA, Serinaldi F, Ntelekos AA (2011) Analyses of seasonal and annual maximum daily discharge records for central Europe. J Hydrol 399(3–4):299–312

    Article  Google Scholar 

  • WSA (2012) Lauenburg: http://www.wsa-lauenburg.wsv.de, official website of the gauge operator

Download references

Acknowledgments

We highly acknowledge the Waterways and Shipping Administration of the Federal Government for providing discharge data of gauge Neu Darchau.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Christoph Mudersbach.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mudersbach, C., Bender, J. & Netzel, F. An analysis of changes in flood quantiles at the gauge Neu Darchau (Elbe River) from 1875 to 2013. Stoch Environ Res Risk Assess 31, 145–157 (2017). https://doi.org/10.1007/s00477-015-1173-7

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00477-015-1173-7

Keywords

Navigation