Skip to main content
Log in

The temporal variation of indoor pollutants in photocopying shop

  • Original Paper
  • Published:
Stochastic Environmental Research and Risk Assessment Aims and scope Submit manuscript

Abstract

The paper includes the identification of the main factors responsible for the temporal variations of indoor pollutants during three daily intervals in a photocopying shop. The measurements of concentration levels of total volatile organic compounds, ozone, carbon monoxide, carbon dioxide, nitrogen dioxide, ammonia, perchloroethylene and non-methane hydrocarbons were performed. The individual concentrations of target pollutants were subjected to principal component analysis (PCA) using a software XLSTAT 2014.1.10. Pearson correlation model indicated the relatively weak correlation between the investigated pollutants in a photocopying environment. PCA extracted three principal components (PCs) from the indoor air pollution data set. Obtained PCs explained 56.72 % of the total variance. The summarized biplots showed which pollutants are responsible for photocopying indoor pollution per sampling day/sampling point/time interval/number of measurement. The results pointed out that the main PCs were related to the usage of toners, electrostatic discharge, heating of photocopiers as well as general intensifying of photocopying processes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Aeroqual Limited (2010) Aeroqual—product catalogue. http://www.aeroqual.com/wp-content/uploads/2010/12/AQL-Product-Catalogue.pdf. Accessed 23 Sep 2014

  • Afif C, Dutot LA, Jambert C, Abboud M, Adjizian-Gérard J, Farah W, Perros EP, Rizk T (2009) Statistical approach for the characterization of NO2 concentrations in Beirut. Air Qual Atmos Health 2:57–67

    Article  CAS  Google Scholar 

  • Cheong KWD, Djunaedy E, Poh TK, Tham KW, Sekhar SC, Wong NH, Ullah MB (2003) Measurements and computations of contaminant’s distribution in an office environment. Build Environ 38(1):135–145

    Article  Google Scholar 

  • Choi E, Choi K, Yi SM (2011) Non-methane hydrocarbons in the atmosphere of a Metropolitan City and a background site in South Korea: sources and health risk potentials. Atmos Environ 45:7563–7573

    Article  CAS  Google Scholar 

  • Destaillats H, Maddalena RL, Singer BC, Hodgson AT, McKone TE (2008) Indoor pollutants emitted by office equipment: a review of reported data and information needs. Atmos Environ 42:1371–1388

    Article  CAS  Google Scholar 

  • Eder B, Bash J, Foley K, Pleim J (2014) Incorporating principal component analysis into air quality model evaluation. Atmos Environ 82:307–315

    Article  CAS  Google Scholar 

  • Edney E, Driscoll D, Speer R, Weathers W, Kleindienst T, Li W, Smith FD (2000) Impact of aerosol liquid water on secondary organic aerosol yields of irradiated toluene/propylene/NOx/(NH4)2SO4/air mixtures. Atmos Environ 34:3907–3939

    Article  CAS  Google Scholar 

  • Elango N, Kasi V, Vembhu B, Govindasamy Poornima J (2013) Chronic exposure to emissions from photocopiers in copy shops causes oxidative stress and systematic inflammation among photocopier operators in India. Environ Health 12(78):1–12

    Google Scholar 

  • Environmental Protection Agency (EPA) (2013) EPA-Care for Your Air: a guide to indoor air quality: understand indoor air in homes, schools, and offices. http://www.epa.gov/iaq/pubs/careforyourair.html. Accessed 27 Sep 2014

  • Esbensen HK, Guyot D, Westad F, Houmoller PL (2002) Multivariate data analysis in practice: An introduction to multivariate data analysis and experimental design. Aalborg University, Esbjerg

    Google Scholar 

  • Forrest WY (1999) Principal components: BiPlots. http://forrest.psych.unc.edu/research-/vista-frames/help/lecturenotes/lecture13/biplot.html. Accessed 26 Sep 2014

  • Furukawa Y, Aizawa Y, Okada M, Watanabe M, Niitsuya M, Kotani M (2002) Negative effect of photocopier toner on alveolar macrophages determined by in vitro magnetometric evaluation. Ind Health 40:214–221

    Article  CAS  Google Scholar 

  • Geng F, Cai C, Tie X, Yu Q, An J, Peng L, Zhou G, Xu J (2009) Analysis of VOC emissions using PCA/APCS receptor model at city of Shanghai, China. J Atmos Chem 62:229–247

    Article  Google Scholar 

  • Georgieva Gocheva-Ilieva S, Valev Ivanov A, Stoyanova Voynikova S, Todorov Boyadzhiev D (2014) Time series analysis and forecasting for air pollution in small urban area: an SARIMA and factor analysis approach. Stoch Environ Res Risk Assess 28(4):1045–1060

    Article  Google Scholar 

  • Guo H, Lee SC, Li WM, Cao JJ (2003) Source characterization of BTEX in indoor microenvironments in Hong Kong. Atmos Environ 37:73–82

    Article  CAS  Google Scholar 

  • Guo H, Wang T, Simpson IJ, Blake DR, Yuc XM, Kwok YH, Li YS (2004) Source contributions to ambient VOCs and CO at a rural site in eastern China. Atmos Environ 38:4551–4560

    Article  CAS  Google Scholar 

  • Hair FJ Jr, Black CW, Babin JB, Anderson ER (2010) Multivariate data analysis, 7th edn. Prentice Hall, Englewood Cliffs

    Google Scholar 

  • He C, Morawska L, Taplin L (2007) Particle emission characteristics of office printers. Environ Sci Technol 41:6039–6045

    Article  CAS  Google Scholar 

  • Henschel BD, Fortann RC, Roache NF (2001) Variations in the emission of volatile organic compounds from the toner for a specific photocopier. J Air Waste Manag Assoc 51:708–717

    Article  CAS  Google Scholar 

  • Kagi N, Fuji S, Horiba Y, Namiki N, Ohtani Y, Emi H, Tamura H, Kim YS (2007) Indoor air quality for chemical and ultrafine particle contaminants from printers. Build Environ 42(5):1949–1954

    Article  Google Scholar 

  • Kecić V, Aksentijević S, Oros I, Kiurski J (2013) Indoor emission of prepress processes. In: Proceedings of 15th Danube-Kris-Mures-Tisa (DKMT) Euroregion Conference on Environment and Health, Novi Sad, pp 181–186

  • Khantee W, Thepanondh S (2014) Source apportionment analysis of airborne volatile organic compounds in Maptaphut, Thailand. Int J Environ Sci Dev 5(2):191–196

    Article  CAS  Google Scholar 

  • Kiurski J, Aksentijević S, Oros I, Kecić V (2014a) Mutual influence of the indoor pollutants during photocopying process. In: Proceedings of 12th international conference on fundamental and applied aspects of physical chemistry (Physical Chemistry 2014), Belgrade, pp 606–608

  • Kiurski J, Kecić V, Oros I, Ranogajec J (2014b) Ammonia release during photocopying operations. In: Proceedings of World Academy of Science, Engineering and Technology, Lisbon, vol 8(4), pp 692–696

  • Kuo YM, Chiu CH, Yu HL (2015) Influences of ambient air pollutants and meteorological conditions on ozone variations in Kaohsiung, Taiwan. Stoch Environ Res Risk Assess 29(3):1037–1050

    Article  Google Scholar 

  • Lee CW, Hsu DJ (2007) Measurements of fine and ultrafine particles formation in photocopy centers in Taiwan. Atmos Environ 41:6598–6609

    Article  CAS  Google Scholar 

  • Lee CS, Lam S, Fai KH (2001) Characterization of VOCs, ozone, and PM10 emissions from office equipment in an environmental chamber. Build Environ 36(7):837–842

    Article  Google Scholar 

  • Mendell MJ, Fisk WJ, Kreiss K, Levin H, Alexander D, Cain WS, Girman JR, Hines CJ, Jensen PA, Milton DK, Rexroat LP, Wallingford KM (2002) Improving the health of workers in indoor environments: priority research needs for a national occupational research agenda. Am J Pub Health 92:1430–1440

    Article  Google Scholar 

  • Nicholson C (1998) Photocopier hazards and a conservation case study. American Institute for Conservation, Washington. http://cool.conservation-us.org/coolaic/sg/bpg/annual/v08/bp08-05.html. Accessed 26 Sep 2014

  • Occupational Safety and Health Administration (OSHA) (2006) Limits for air contaminants toxic and hazardous substances. 1910.1000 Table Z-1. http://www.osha.gov/pls/oshaweb/owadisp.show_document?p_table=standards&p_id=9992. Accessed 28 Sep 2014

  • Pires JCM, Sousa SIV, Pereira MC, Alvim-Ferraz MCM, Martins FG (2008a) Management of air quality monitoring using principal component and cluster analysis-Part I: SO2 and PM10. Atmos Environ 42:1249–1260

    Article  CAS  Google Scholar 

  • Pires JCM, Sousa SIV, Pereira MC, Alvim-Ferraz MCM, Martins FG (2008b) Management of air quality monitoring using principal component and cluster analysis-Part II: CO, NO2 and O3. Atmos Environ 42:1261–1274

    Article  CAS  Google Scholar 

  • Prion S, Haerling KA (2014) Making sense of methods and measurement: pearson product moment correlation coefficient. Clin Simul Nurs 10:587–588

    Article  Google Scholar 

  • Puth MT, Neuhauser M, Ruxton GD (2014) Effective use of Pearson’s product-moment correlation coefficient. Anim Behav 93:183–189

    Article  Google Scholar 

  • Rackes A, Waring SM (2013) Modelling impacts of dynamic ventilation strategies on indoor air quality of offices in six US cities. Build Environ 60:243–253

    Article  Google Scholar 

  • Roller G (2006) Quantitative risk assessment for the exposure to toner emissions from copiers. Gefahrst Reinhalt Luft 5:211–216

    Google Scholar 

  • Saraga D, Pateraki S, Papadopoulos A, Vasilakos Ch, Maggos Th (2011) Studying the indoor air quality in three non-residential environments of different use: a museum, a printery industry and an office. Build Environ 46(11):2333–2341

    Article  Google Scholar 

  • Singh BP, Kumar A, Singh D, Punia M, Kumar K, Kumar VJ (2014) An assessment of ozone levels, UV radiation and their occupational health hazard estimation during photocopying operation. J Hazard Mater 275:55–62

    Article  CAS  Google Scholar 

  • Taylor R (1990) Interpretationof the correlation coefficient: a basic review. J Diagn Med Sonog 6(1):35–39

    Article  Google Scholar 

  • TJK (1969) Electrophotography. The focal encyclopedia of photography. Focal Press, Boston, pp 504–505

    Google Scholar 

  • Valuntaite V, Girgždiene R (2010) Level and formation peculiarities of chemical and physical pollution in the workplaces. Environ Res Eng Manag 53:30–35

    Google Scholar 

  • Wolkoff P, Wilkins CK, Clausen PA, Nielsen GD (2006) Organic compounds in office environments-sensory irritation, odor, measurements and the role of reactive chemistry. Indoor Air 16:7–19

    Article  CAS  Google Scholar 

  • Yidana SM, Ophori D, Banoeng-Yakubo B (2008) A multivariate statistical analysis of surface water chemistry data-The Ankobra Basin, Ghana. J Environ Manag 86:80–87

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors acknowledge the financial support of the Ministry of Education, Science and Technological Development of the Republic of Serbia (Project No. TR 34014).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jelena S. Kiurski.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kiurski, J.S., Oros, I.B., Kecic, V.S. et al. The temporal variation of indoor pollutants in photocopying shop. Stoch Environ Res Risk Assess 30, 1289–1300 (2016). https://doi.org/10.1007/s00477-015-1107-4

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00477-015-1107-4

Keywords

Navigation