Skip to main content
Log in

Direct Penman–Monteith parameterization for estimating stomatal conductance and modeling sap flow

  • Original Article
  • Published:
Trees Aims and scope Submit manuscript

Abstract

Key message

The novel approach for direct parameterization of the Penman–Monteith equation was developed to compute diurnal courses of stand canopy conductance from sap flow.

Abstract

The Penman–Monteith equation of evaporation is often combined with sap flow measurements to describe canopy transpiration and stomatal conductance. The traditional approach involves a two-step calculation. In the first step, stomatal conductance is computed using an inverted form of Penman–Monteith equation. The second step correlates these values with environmental factors. In this work, we present an improved approach for direct parameterization of the Penman–Monteith equation developed to compute diurnal courses of stand canopy conductance (g c) from sap flow. The main advantages of this proposed approach versus using the classical approach are: (1) the calculation process is faster and involves fewer steps, (2) parameterization provides realistic values of canopy conductance, including conditions of low atmospheric vapor pressure deficit (D), whereas the traditional approach tends to yield unrealistic values for low D and (3) the new calculation method does not require enveloping curves to describe dependence of g c on D and thus avoids subjective data selection but it still allows to visualize separable responses of g c to environmental drivers (i.e., global radiation and vapor pressure deficit). The proposed approach was tested to calculate g c and to model the sap flow of a high mountain Pinus canariensis forest. The new calculation method permitted us to describe the stand canopy conductance and stand sap flow in sub-hour resolution for both day and night conditions. Direct parameterization of the Penman–Monteith approach as implemented in this study proved sufficiently sensitive for detecting diurnal variation in g c and for predicting sap flow from environmental variables under various atmospheric evapotranspirative demands and differing levels of soil water availability.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Addington R, Mitchell R, Oren R, Donovan L (2004) Stomatal sensitivity to vapor pressure deficit and its relationship to hydraulic conductance in Pinus palustris. Tree Physiol 24:561–569

    Article  PubMed  Google Scholar 

  • Anfodillo T, Rento S, Carraro V et al (1998) Tree water relations and climatic variations at the alpine timberline: seasonal changes of sap flux and xylem water potential in Larix decidua Miller, Picea abies (L.) Karst. and Pinus cembra L. Ann For Sci 55:159–172

    Article  Google Scholar 

  • Aphalo P, Jarvis P (1991) Do stomata respond to relative humidity? Plant Cell Environ 14:127–132

    Article  Google Scholar 

  • Ball J, Woodrow I, Berry J (1987) A model predicting stomatal conductance and its contribution to the control of photosynthesis under different environmental conditions. Prog Photosynth Res IV:221–224

    Article  Google Scholar 

  • Berry JA, Beerling DJ, Franks PJ (2010) Stomata: key players in the earth system, past and present. Curr Opin Plant Biol 13:233–240. doi:10.1016/j.pbi.2010.04.013

    Article  PubMed  Google Scholar 

  • Bohrer G, Mourad H, Laursen TA et al (2005) Finite element tree crown hydrodynamics model (FETCH) using porous media flow within branching elements: a new representation of tree hydrodynamics. Water Resour Res 41:1–17. doi:10.1029/2005WR004181

    Article  Google Scholar 

  • Bonan GB, Williams M, Fisher RA, Oleson KW (2014) Modeling stomatal conductance in the earth system: linking leaf water-use efficiency and water transport along the soil–plant–atmosphere continuum. Geosci Model Dev 7:2193–2222. doi:10.5194/gmd-7-2193-2014

    Article  Google Scholar 

  • Bourne AE, Haigh AM, Ellsworth DS (2015) Stomatal sensitivity to vapour pressure deficit relates to climate of origin in Eucalyptus species. Tree Physiol 35:266–278. doi:10.1093/treephys/tpv014

    Article  PubMed  Google Scholar 

  • Braun S, Schindler C, Leuzinger S (2010) Use of sap flow measurements to validate stomatal functions for mature beech (Fagus sylvatica) in view of ozone uptake calculations. Environ Pollut 158:2954–2963. doi:10.1016/j.envpol.2010.05.028

    Article  CAS  PubMed  Google Scholar 

  • Brito P, Lorenzo JR, González-Rodríguez ÁM et al (2014) Canopy transpiration of a Pinus canariensis forest at the tree line: implications for its distribution under predicted climate warming. Eur J For Res 133:491–500. doi:10.1007/s10342-014-0779-5

    Article  Google Scholar 

  • Brito P, Lorenzo JR, González-rodríguez ÁM et al (2015) Canopy transpiration of a semi arid Pinus canariensis forest at a treeline ecotone in two hydrologically contrasting years. Agric For Meteorol 201:120–127. doi:10.1016/j.agrformet.2014.11.008

    Article  Google Scholar 

  • Buckley TN, Mott KA (2013) Modelling stomatal conductance in response to environmental factors. Plant Cell Environ 36:1691–1699. doi:10.1111/pce.12140

    Article  PubMed  Google Scholar 

  • Buckley TN, Turnbull TL, Adams MA (2012) Simple models for stomatal conductance derived from a process model: cross-validation against sap flux data. Plant Cell Environ 35:1647–1662. doi:10.1111/j.1365-3040.2012.02515.x

    Article  PubMed  Google Scholar 

  • Burghardt M, Riederer M (2003) Ecophysiological relevance of cuticular transpiration of deciduous and evergreen plants in relation to stomatal closure and leaf water potential. J Exp Bot 54:1941–1949. doi:10.1093/jxb/erg195

    Article  CAS  PubMed  Google Scholar 

  • Caird M, Richards J, Donovan L (2007) Nighttime stomatal conductance and transpiration in C3 and C4 plants. Plant Physiol 143:4–10. doi:10.1104/pp.106.092940

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Carrasco LO, Bucci SJ, Di Francescantonio D et al (2015) Water storage dynamics in the main stem of subtropical tree species differing in wood density, growth rate and life history traits. Tree Physiol 35:354–365. doi:10.1093/treephys/tpu087

    Article  Google Scholar 

  • Čermák J, Deml M, Penka M (1973) A new method of sap flow rate determination in trees. Biol Plant 15:171–178

    Article  Google Scholar 

  • Čermák J, Kučera J, Nadezhdina N (2004) Sap flow measurements with some thermodynamic methods, flow integration within trees and scaling up from sample trees to entire forest stands. Trees 18:529–546. doi:10.1007/s00468-004-0339-6

    Article  Google Scholar 

  • Čermák J, Kučera J, Bauerle WL et al (2007) Tree water storage and its diurnal dynamics related to sap flow and changes in stem volume in old-growth Douglas-fir trees. Tree Physiol 27:181–198

    Article  PubMed  Google Scholar 

  • Chuang Y, Oren R, Bertozzi AL et al (2006) The porous media model for the hydraulic system of a conifer tree: linking sap flux data to transpiration rate. Ecol Modell 191:447–468. doi:10.1016/j.ecolmodel.2005.03.027

    Article  Google Scholar 

  • Cienciala E, Kučera J, Lindroth A et al (1997) Canopy transpiration from a boreal forest in Sweden during a dry year. Agric For Meteorol 86:157–167. doi:10.1016/S0168-1923(97)00026-9

    Article  Google Scholar 

  • Collatz GJ, Ball JT, Grivet C, Berry JA (1991) Physiological and environmental regulation of stomatal conductance, photosynthesis and transpiration: a model that includes a laminar boundary layer. Agric For Meteorol 54:107–136. doi:10.1016/0168-1923(91)90002-8

    Article  Google Scholar 

  • Egea G, Verhoef A, Vidale PL (2011) Towards an improved and more flexible representation of water stress in coupled photosynthesis-stomatal conductance models. Agric For Meteorol 151:1370–1384. doi:10.1016/j.agrformet.2011.05.019

    Article  Google Scholar 

  • Ewers BE, Oren R (2000) Analyses of assumptions and errors in the calculation of stomatal conductance from sap flux measurements. Tree Physiol 20:579–589

    Article  PubMed  Google Scholar 

  • Ewers BE, Mackay DS, Samanta S (2007a) Interannual consistency in canopy stomatal conductance control of leaf water potential across seven tree species. Tree Physiol 27:11–24. doi:10.1093/treephys/27.1.11

    Article  CAS  PubMed  Google Scholar 

  • Ewers BE, Oren R, Kim H et al (2007b) Effects of hydraulic architecture and spatial variation in light on mean stomatal conductance of tree branches. Plant Cell Environ 30:483–496. doi:10.1111/j.1365-3040.2007.01636.x

    Article  CAS  PubMed  Google Scholar 

  • Fernández-Palacios J, de Nicolás J (1995) Altitudal pattern of vegetation variation on tenerife. J Veg Sci 6:183–190

    Article  Google Scholar 

  • Fu S, Sun L, Luo Y (2016) Combining sap flow measurements and modelling to assess water needs in an oasis farmland shelterbelt of Populus simonii Carr in Northwest China. Agric Water Manag 177:172–180. doi:10.1016/j.agwat.2016.07.015

    Article  Google Scholar 

  • García-Santos G, Bruijnzeel LA, Dolman AJ (2009) Modelling canopy conductance under wet and dry conditions in a subtropical cloud forest. Agric For Meteorol 149:1565–1572. doi:10.1016/j.agrformet.2009.03.008

    Article  Google Scholar 

  • Gieger T, Leuschner C (2004) Altitudinal change in needle water relations of Pinus canariensis and possible evidence of a drought-induced alpine timberline on Mt. Teide, Tenerife. Flora 109:100–109

    Article  Google Scholar 

  • Granier A, Loustau D (1994) Measuring and modelling the transpiration of a maritime pine canopy from sap-flow data. Agric For Meteorol 71:61–81

    Article  Google Scholar 

  • Granier A, Reichstein M, Bréda N et al (2007) Evidence for soil water control on carbon and water dynamics in European forests during the extremely dry year: 2003. Agric For Meteorol 143:123–145

    Article  Google Scholar 

  • Harris P, Huntingford C, Cox PM et al (2004) Effect of soil moisture on canopy conductance of Amazonian rainforest. Agric For Meteorol 122:215–227. doi:10.1016/j.agrformet.2003.09.006

    Article  Google Scholar 

  • Hernandez-Santana V, Fernández J, Rodriguez-Dominguez C et al (2016) The dynamics of radial sap flux density reflects changes in stomatal conductance in response to soil and air water deficit. Agric For Meteorol 219:92–101

    Article  Google Scholar 

  • Irvine J, Grace J (1997) Continuous measurements of water tensions in the xylem of trees based on the elastic properties of wood. Planta 202:455–461. doi:10.1007/s00425005014

    Article  CAS  Google Scholar 

  • Janott M, Gayler S, Gessler A et al (2011) A one-dimensional model of water flow in soil-plant systems based on plant architecture. Plant Soil 341:233–256. doi:10.1007/s11104-010-0639-0

    Article  CAS  Google Scholar 

  • Jarvis PG (1976) The interpretation of the variations in leaf water potential and stomatal conductance found in canopies in the field. Philos Trans R Soc B Biol Sci 273:593–610. doi:10.1098/rstb.1976.0035

    Article  CAS  Google Scholar 

  • Jarvis AJ, Davies WJ (1998) The coupled response of stomatal conductance to photosynthesis and transpiration. J Exp Bot 49:399–406

    Article  Google Scholar 

  • Jarvis P, McNaughton K (1986) Stomatal control of transpiration: scaling up from leaf to region. Adv Ecol Res 15:1–49

    Article  Google Scholar 

  • Jones HG (2014) Plants and microclimate. A quantitative approach to environmental plant physiology. doi:10.1017/CBO9781107415324.004

    Google Scholar 

  • Kavanagh KL, Pangle R, Schotzko AD (2007) Nocturnal transpiration causing disequilibrium between soil and stem predawn water potential in mixed conifer forests of Idaho. Tree Physiol 27:621–629

    Article  PubMed  Google Scholar 

  • Kučera J, Čermák J, Penka M (1977) Improved thermal method of continual recording the transpiration flow rate dynamics. Biol Plant 19:413–420

    Article  Google Scholar 

  • Langensiepen M, Fuchs M, Bergamaschi H et al (2009) Quantifying the uncertainties of transpiration calculations with the Penman–Monteith equation under different climate and optimum water supply conditions. Agric For Meteorol 149:1063–1072. doi:10.1016/j.agrformet.2009.01.001

    Article  Google Scholar 

  • Leuning R, Kelliher FM, De Pury DGG, Schulze ED (1995) Leaf nitrogen, photosynthesis, conductance and transpiration: scaling from leaves to canopies. Plant Cell Environ 18:1183–1200

    Article  Google Scholar 

  • Lohammar T, Larsson S, Linder S, Falk S (1980) FAST: simulation models of gaseous exchange in scots pine. Ecol Bull 32:505–523

    Google Scholar 

  • Lu P, Biron P, Bréda N, Granier A (1995) Water relations of adult Norway spruce [Picea abies (L) Karst] under soil drought in the Vosges mountains: water potential, stomatal conductance and transpiration. Ann Sci For 52:117–129. doi:10.1051/forest:19950203

    Article  Google Scholar 

  • Luis V, Jimenez M, Morales D et al (2005) Canopy transpiration of a Canary Islands pine forest. Agric For Meteorol 135:117–123. doi:10.1016/j.agrformet.2005.11.009

    Article  Google Scholar 

  • Malone M (1993) Hydraulic signals. Philos Trans R Soc London Biol Sci 341:33–39

    Article  Google Scholar 

  • Martin T, Brown K, Cermak J et al (1997) Crown conductance and tree and stand transpiration in a second-growth Abies amabilis forest. Can J For Res 27:797–808

    Article  Google Scholar 

  • Matheny A, Bohrer G, Stoy P et al (2014a) Characterizing the diurnal patterns of errors in the prediction of evapotranspiration by several land-surface models: an NACP analysis. J Geophys Res 119:1458–1473. doi:10.1002/2014JG002623.Received

    Article  Google Scholar 

  • Matheny A, Bohrer G, Vogel C et al (2014b) Species-specific transpiration responses to intermediate disturbance in a northern hardwood forest. J Geophys Res Biogeosci 119:1–20. doi:10.1002/2014JG002804.Received

    Google Scholar 

  • Matheny AM, Bohrer G, Garrity SR et al (2015) Observations of stem water storage in trees of opposing hydraulic strategies. Ecosphere 6:1–13. doi:10.1890/ES15-00170.1

    Article  Google Scholar 

  • Meinzer FC, Grantz DA (1990) Stomatal and hydraulic conductance in growing sugarcane-stomatal adjustment to water transport capacity. Plant Cell Environ 13:383–388

    Article  Google Scholar 

  • Meinzer FC, Andrade JL, Goldstein G et al (1997) Control of transpiration from the upper canopy of a tropical forest: the role of stomatal, boundary layer and hydraulic architecture components. Plant Cell Environ 20:1242–1252. doi:10.1046/j.1365-3040.1997.d01-26.x

    Article  Google Scholar 

  • Mirfenderesgi G, Bohrer G, Matheny AM et al (2016) Tree-level hydrodynamic approach for modeling aboveground water storage and stomatal conductance illuminates the effects of tree hydraulic strategy. J Geophys Res Biogeosciences 121:1792–1813. doi:10.1002/2016JG003467

    Article  Google Scholar 

  • Monteith JL (1965) Evaporation and environment. Symp Soc Exp Biol 19:205–234

    CAS  PubMed  Google Scholar 

  • Oguntunde P, Vandegiesen N, Savenije H (2007) Measurement and modelling of transpiration of a rain-fed citrus orchard under subhumid tropical conditions. Agric Water Manag 87:200–208. doi:10.1016/j.agwat.2006.06.019

    Article  Google Scholar 

  • Oren R, Sperry JS, Katul GG et al (1999) Survey and synthesis of intra- and interspecific variation in stomatal sensitivity to vapour pressure deficit. Plant Cell Environ 22:1515–1526. doi:10.1046/j.1365-3040.1999.00513.x

    Article  Google Scholar 

  • Oren R, Sperry J, Ewers B et al (2001) Sensitivity of mean canopy stomatal conductance to vapor pressure deficit in a flooded Taxodium distichum L. forest: hydraulic and non-hydraulic effects. Oecologia 126:21–29. doi:10.1007/s004420000497

    Article  Google Scholar 

  • Penman HL (1948) Natural evaporation from open water, bare soil and grass. Proc R Soc Lond A Math Phys Sci 193:120–145

    Article  CAS  PubMed  Google Scholar 

  • Perämäki M, Nikinmaa E, Sevanto S et al (2001) Tree stem diameter variations and transpiration in Scots pine: an analysis using a dynamic sap flow model. Tree Physiol 21:889–897

    Article  PubMed  Google Scholar 

  • Phillips N, Oren R (1998) A comparison of daily representations of canopy conductance based on two conditional time-averaging methods and the dependence of daily conductance on environmental factors. Ann Sci For 55:217–235. doi:10.1051/forest:19980113

    Article  Google Scholar 

  • Phillips N, Ryan M, Bond B et al (2003) Reliance on stored water increases with tree size in three species in the Pacific Northwest. Tree Physiol 23:237–245

    Article  CAS  PubMed  Google Scholar 

  • Sack L, Holbrook NM (2006) Leaf hydraulics. Annu Rev Plant Biol 57:361–381. doi:10.1146/annurev.arplant.56.032604.144141

    Article  CAS  PubMed  Google Scholar 

  • Schlesinger WH, Jasechko S (2014) Transpiration in the global water cycle. Agric For Meteorol 189–190:115–117. doi:10.1016/j.agrformet.2014.01.011

    Article  Google Scholar 

  • Shimazaki K, Doi M, Assmann SM, Kinoshita T (2007) Light regulation of stomatal movement. Annu Rev Plant Biol 58:219–247. doi:10.1146/annurev.arplant.57.032905.105434

    Article  CAS  PubMed  Google Scholar 

  • Sommer R, Sáb TDDA, Vielhauera K et al (2002) Transpiration and canopy conductance of secondary vegetation in the eastern Amazon. Agric For Meteorol 112:103–121. doi:10.1016/S0168-1923(02)00044-8

    Article  Google Scholar 

  • Sperry JS, Adler FR, Campbell GS, Comstock JP (1998) Limitation of plant water use by rhizosphere and xylem conductance: results from a model. Plant Cell Environ 21:347–359. doi:10.1046/j.1365-3040.1998.00287.x

    Article  Google Scholar 

  • Steppe K, De Pauw DJW, Lemeur R, Vanrolleghem PA (2006) A mathematical model linking tree sap flow dynamics to daily stem diameter fluctuations and radial stem growth. Tree Physiol 26:257–273. doi:10.1093/treephys/26.3.257

    Article  PubMed  Google Scholar 

  • Stewart J (1988) Modelling surface conductance of pine forest. Agric For Meteorol 43:19–35

    Article  Google Scholar 

  • Tardieu F, Davies WJ (1993) Integration of hydraulic and chemical signalling in the control of stomatal conductance and water status of droughted plants. Plant Cell Environ 16:341–349

    Article  CAS  Google Scholar 

  • Urban J, Čermák J, Ceulemans R (2015) Above- and below-ground biomass, surface and volume, and stored water in a mature Scots pine stand. Eur J For Res 134:61–74. doi:10.1007/s10342-014-0833-3

    Article  CAS  Google Scholar 

  • Verhoef A, Egea G (2014) Modeling plant transpiration under limited soil water: comparison of different plant and soil hydraulic parameterizations and preliminary implications for their use in land surface models. Agric For Meteorol 191:22–32. doi:10.1016/j.agrformet.2014.02.009

    Article  Google Scholar 

  • Wang H, Zhao P, Holscher D et al (2012) Nighttime sap flow of Acacia mangium and its implications for nighttime transpiration and stem water storage. J Plant Ecol 5:294–304. doi:10.1093/jpe/rtr025

    Article  Google Scholar 

  • Wang H, Guan H, Deng Z, Simmons CT (2014) Optimization of canopy conductance models from concurrent measurements of sap flow and stem water potential on Drooping Sheoak in South Australia. Water Resour Res 50:6154–6167. doi:10.1002/2013WR014818

    Article  Google Scholar 

  • Ward EJ, Oren R, Sigurdsson BD et al (2008) Fertilization effects on mean stomatal conductance are mediated through changes in the hydraulic attributes of mature Norway spruce trees. Tree Physiol 28:579–596

    Article  PubMed  Google Scholar 

  • Ward EJ, Bell DM, Clark JS, Oren R (2013) Hydraulic time constants for transpiration of loblolly pine at a free-air carbon dioxide enrichment site. Tree Physiol 33:123–134. doi:10.1093/treephys/tps114

    Article  CAS  PubMed  Google Scholar 

  • Warren JM, Meinzer FC, Brooks JR, Domec JC (2005) Vertical stratification of soil water storage and release dynamics in Pacific Northwest coniferous forests. Agric For Meteorol 130:39–58. doi:10.1016/j.agrformet.2005.01.004

    Article  Google Scholar 

  • Whitehead D (1998) Regulation of stomatal conductance and transpiration in forest canopies. Tree Physiol 18:633–644

    Article  PubMed  Google Scholar 

  • Whitley R, Medlyn B, Zeppel M et al (2009) Comparing the Penman-Monteith equation and a modified Jarvis–Stewart model with an artificial neural network to estimate stand-scale transpiration and canopy conductance. J Hydrol 373:256–266. doi:10.1016/j.jhydrol.2009.04.036

    Article  Google Scholar 

  • Wieser G, Peters J, Luis VC et al (2002) Ecophysiological studies on the water relations in a Pinus canariensis stand, Tenerife, Canary Islands. Phyton (B Aires) 42:291–304

    Google Scholar 

  • Wieser G, Luis VC, Cuevas E (2006) Quantification of ozone uptake at the stand level in a Pinus canariensis forest in Tenerife, Canary Islands: an approach based on sap flow measurements. Environ Pollut 140:383–386. doi:10.1016/j.envpol.2005.12.003

    Article  CAS  PubMed  Google Scholar 

  • Xu X, Medvigy D, Powers JS et al (2016) Diversity in plant hydraulic traits explains seasonal and inter-annual variations of vegetation dynamics in seasonally dry tropical forests. New Phytol 212:80–95. doi:10.1111/nph.14009

    Article  PubMed  Google Scholar 

  • Zeppel MJB, Lewis JD, Chaszar B et al (2011) Nocturnal stomatal conductance responses to rising [CO2], temperature and drought. New Phytol. doi:10.1111/j.1469-8137.2011.03993.x

    Google Scholar 

  • Zhang Y, Oren R, Kang S (2012) Spatiotemporal variation of crown-scale stomatal conductance in an arid Vitis vinifera L. cv. Merlot vineyard: direct effects of hydraulic properties and indirect effects of canopy leaf area. Tree Physiol 32:262–269. doi:10.1093/treephys/tpr120

    Article  PubMed  Google Scholar 

  • Zweifel R, Rigling A, Dobbertin M (2009) Species-specific stomatal response of trees to drought—a link to vegetation dynamics? J Veg Sci 20:442–454. doi:10.1111/j.1654-1103.2009.05701.x

    Article  Google Scholar 

Download references

Acknowledgements

The authors express their gratitude to National Park’s Network for permission to work in Teide National Park. We wish to thank A. Orsini for her work on language editing of the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Josef Urban.

Ethics declarations

Funding

This work was supported by EMS Brno, the Spanish Government (CGL2006-10210/BOS co-financed by FEDER, CGL2010-21366-C04-04 MCI), Russian Academic Excellence Project 5-100 and the Czech project MSMT COST LD 13017 under the framework of the COST FP1106 network STReESS. P.B. received a fellowship from Canarian Agency for Research, Innovation and Information Society (ACIISI) co-financed by FEDER.

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Communicated by E. Priesack.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kučera, J., Brito, P., Jiménez, M.S. et al. Direct Penman–Monteith parameterization for estimating stomatal conductance and modeling sap flow. Trees 31, 873–885 (2017). https://doi.org/10.1007/s00468-016-1513-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00468-016-1513-3

Keywords

Navigation