Skip to main content

Advertisement

Log in

Are allometric relationships between tree height and diameter dependent on environmental conditions and management?

  • Original Article
  • Published:
Trees Aims and scope Submit manuscript

Abstract

Key message

The allometric relationship of Scots pine height versus diameter is not constant and does not follow elastic similarity and geometric scaling rules in Eastern Europe.

Abstract

Scots pine is one of the most widely distributed tree species in Europe. It occurs in the boreal forest but also occupies vast areas on dry sites of the Mediterranean region and on continental sites in Central and Eastern Europe. Improved understanding of the influence of climatic factors, forest management and tree interactions on the relationship between tree height and stem diameter is necessary for sustainable forest management. The main objective of the present study was to study the changes in the stem allometry of Scots pine and to classify them using the periodic allometric coefficient of the height–diameter relationship. Periodic (annual) height and diameter increment data of 114 trees with observation periods from 40 to 115 years from three European countries including Estonia, Poland and the Czech Republic was used. Periodic allometric coefficients were calculated for the whole trees’s observation period to identify the effect of different environmental conditions and management. To classify trajectories of the allometric coefficient, eight clustering algorithms were qualified and internal validation of algorithms was carried out by three indices. The performance of a superior algorithm was compared according to five different distance measures and seven clustering methods. Study results indicated a variable allometric relationship between tree height and diameter which did not follow elasticity or geometric scaling rules across sites. Also, significant differences in allometric coefficients were found between the sites. In regard to the latitudinal difference one similar allometric coefficient trajectory for Estonia and one for Poland and the Czech Republic were found.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Bielak K, Brzeziecki B (2006) Impact of thinning on the dynamics of mixed forest stands: an example from the Białowieża Forest, north-eastern Poland. For Wood Technol 60:117–127

    Google Scholar 

  • Bonser SP, Aarssen W (1994) Plastic allometry in young sugar maple (Acer saccharum): adaptive responses to light availability. Am J Bot 81:400–406

    Article  Google Scholar 

  • Borcard D, Gillet F, Legendre P (2011) Numerical ecology in R. Springer, New York

    Book  Google Scholar 

  • Bragg DC (2001) Potential relative increment (PRI): a new method to empirically derive optimal tree diameter growth. Ecol Model 137:77–92

    Article  Google Scholar 

  • Brock G, Pihur V, Datta S, Datta S (2008) clValid, an R package for cluster validation. J Stat Softw 25:1–22

    Article  Google Scholar 

  • Calama R, Montero G (2004) Interregional nonlinear height–diameter model with random coefficient for stone pine in Spain. Can J For Res 34:150–163

    Article  Google Scholar 

  • Cieszewski CJ, Strub MR, Zasada M (2007) New dynamic site equation that fits best the Schwappach data for Scots pine (Pinus sylvestris L.) in Central Europe. For Ecol Manage 243:83–93

    Article  Google Scholar 

  • Claussen JW, Maycock CR (1995) Stem allometry in a North Queensland tropical rainforest. Biotropica 27:421–426

    Article  Google Scholar 

  • Dalton L, Ballarin V, Brun M (2009) Clustering algorithms: on learning, validation, performance, and applications to genomics. Curr Genomics 10:430–445

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Damgaard C (2012) Estimating plant allometric relationships in a power model with a minimum size of allocation. Ecol Inform 8:65–67

    Article  Google Scholar 

  • Ducey MJ (2012) Evergreenness and wood density predict height–diameter scaling in trees of the northeastern United States. For Ecol Manage 279:21–26

    Article  Google Scholar 

  • Eastaugh CS, Kangur A, Korjus H, Kiviste A, Zlatanov T, Velichkov I, Srdjevic B, Srdjevic Z, Hasenauer H (2013) Scaling issues and constraints in modelling of forest ecosystems: a review with special focus on user needs. Balt For 19(2):316–330

    Google Scholar 

  • EMHI (2013) Estonian climate. Estonian Meteorological and Hydrological Institute. http://www.emhi.ee/. Accessed 2 Feb 2013

  • Fayolle A, Doucet JL, Gillet JF, Bourland N, Lejeune P (2013) Tree allometry in Central Africa: testing the validity of pantropical multi-species allometric equations for estimating biomass and carbon stocks. For Ecol Manage 305:29–37

    Article  Google Scholar 

  • Feldpausch TR, Banin L, Phillips OL, Baker TR, Lewis SL, Quesada CA et al (2011) Height–diameter allometry of tropical forest trees. Biogeosciences 8:1081–1106

    Article  Google Scholar 

  • Ferreira L, Hitchcock DB (2009) A comparison of hierarchical methods for clustering functional data. Commun Stat Simul Comput 38:1925–1949

    Article  Google Scholar 

  • Fox J, Weisberg S (2011) An {R} companion to applied regression, 2nd edn. Sage, Thousand Oaks. http://socserv.socsci.mcmaster.ca/jfox/Books/Companion. Accessed 31 Dec 2013

  • Franceschini T, Schneider R (2014) Influence of shade tolerance and development stage on the allometry of ten temperate tree species. Oecologia 176(3):739–749

    Article  PubMed  Google Scholar 

  • Gayon J (2000) History of the Concept of Allometry. Amer Zool 40:748–758

    Google Scholar 

  • Geng YP, Pan XY, Xu CY, Zhang WJ, Li B, Chen JK (2007) Plasticity and ontogenetic drift of biomass allocation in response to above- and below-ground resource availabilities in perennial herbs: case study of Alternanthera philoxeroides. Ecol Res 22:255–260

    Article  Google Scholar 

  • Groot A, Brown KM, Morrison JK, Barker JE (1984) A ten-year tree and stand response of jack pine to ureafertilization and low thinning. Can J For Res 14:44–50

    Article  Google Scholar 

  • Groll A, Tutz G (2012) Regularization for generalized additive mixed models by likelihood-based boosting. Methods Inf Med 51(2):168–177

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hara T, Kimura M, Kikuzawa K (1991) Growth patterns of tree height and stem diameter in populations of Abies veitchii, A. mariesii and Betula ermanii. J Ecol 79:1085–1098

    Article  Google Scholar 

  • Henry HAL, Aarssen LW (1999) The interpretation of stem diameter–height allometry in trees: biomechanical constraints, neighbour effects, or biased regressions? Ecol Lett 2:89–97

    Article  Google Scholar 

  • Huxley JS (1932) Problems of relative growth. Lincoln Mac Veagh Dial–The Dial Press, New York

    Google Scholar 

  • Huxley JS, Teissier G (1936) Terminology of relative growth. Nature 137:780–781

    Article  Google Scholar 

  • KAUR (2015) Estonian environment agency. http://www.ilmateenistus.ee/?lang=en. Accessed 21 Nov 2014

  • Kangur A, Korjus H, Jõgiste K, Kiviste A (2005) A conceptual model of forest stand development based on permanent sample-plot data in Estonia. Scand J For Res 20:94–101

    Article  Google Scholar 

  • Kangur A, Sims A, Jõgiste K, Kiviste A, Korjus H, Kv Gadow (2007) Comparative modeling of stand development in Scots pine dominated forests in Estonia. For Ecol Manage 250:109–118

    Article  Google Scholar 

  • King DA (1990) The adaptive significance of tree height. Am Nat 135:809–828

    Article  Google Scholar 

  • King DA (1996) Allometry and life history of tropical trees. J Trop Ecol 12:25–44

    Article  Google Scholar 

  • King DA (2005) Linking tree form, allocation and growth with an allometrically explicit model. Ecol Model 185:77–91

    Article  Google Scholar 

  • King DA, Davies SJ, Tan S, Nur Supardi MN (2009) Trees approach gravitational limits to height in tall lowland forests of Malaysia. Funct Ecol 23:284–291

    Article  Google Scholar 

  • Klingenberg CP (1996) Multivariate allometry. In: Marcus LF (ed) Advances in morphometrics. Plenum, New York, pp 23–49

    Chapter  Google Scholar 

  • Köster K, Kangur A, Hari P, Jõgiste K (2008) Test in Estonia at the southern border of boreal zone. In: Hari P, Kulmala L (eds.) Boreal forest and climate change. Advances in global change research. Springer Science and Business Media, Berlin, pp 468–472

  • Kroon J, Andersson B, Mullin TG (2008) Genetic variation in the diameter–height relationship in Scots pine (Pinus sylvestris). Can J For Res 38:1493–1503

    Article  CAS  Google Scholar 

  • Latimer AM, Gelfand AE, Silander JA (2006) Building statistical models to analyze species distributions. Ecol Appl 16:33–50

    Article  PubMed  Google Scholar 

  • Legendre P, Legendre L (1998) Numerical ecology, 2nd edn. Elsevier, Netherlands

    Google Scholar 

  • Lin X (1999) Inference in generalized additive mixed models by using smoothing splines. J R Stat Soc Ser B 61:381–400

    Article  Google Scholar 

  • Lines ER, Zavala MA, Purves DW, Coomes DA (2012) Predictable changes in aboveground allometry of trees along gradients of temperature, aridity and competition. Glob Ecol Biogeogr 10:1017–1028

    Article  Google Scholar 

  • López-Serrano FR, Garcıa-Morote A, Andrés-Abellán M, Tendero A, Cerro AD (2005) Site and weather effects in allometries: a simple approach to climate change effect on pines. For Ecol Manage 215:251–270

    Article  Google Scholar 

  • Maaten T, Kurm M, Kiviste A, Loks M (2011) The influence of seed origin on stand variables of Scots pine (Pinus sylvestris L.) provenance trial in Ahunapalu. For Stud (Metsanduslikud Uurim) 51:65–79

    Google Scholar 

  • Martinez-Vilalta J, Vanderklein D, Mencuccini M (2007) Tree height and age-related decline in growth in Scots pine (Pinus sylvestris L.). Oecologia 150:529–544

    Article  PubMed  Google Scholar 

  • Matías L, Jump AS (2012) Interactions between growth, demography and biotic interactions in determining species range limits in a warming world: the case of Pinus sylvestris. For Ecol Manage 282:10–22

    Article  Google Scholar 

  • McConnaughay K, Coleman J (1999) Biomass allocation in plants: ontogeny or optimality? A test along three resource gradients. Ecology 80:2581–2593

    Article  Google Scholar 

  • McMahon T (1973) Size and shape in biology: elastic criteria impose limits on biological proportions, and consequently on metabolic rates. Science 179:1201–1204

    Article  CAS  PubMed  Google Scholar 

  • Mellor AFP, Cey EE (2015) Using generalized additive mixed models to assess spatial, temporal, and hydrologic controls on bacteria and nitrate in a vulnerable agricultural aquifer. J Contam Hydrol 182:104–116

    Article  CAS  PubMed  Google Scholar 

  • Metslaid S, Sims A, Kangur A, Hordo M, Jõgiste K, Kiviste A, Hari P (2011) Growth patterns from different forest generations of Scots pine in Estonia. J For Res 17(3):237–243

    Article  Google Scholar 

  • Morote FAG, Serrano FRL, Andrés M, Rubio E, Jiménez JLG, de las Heras J (2012) Allometries, biomass stocks and biomass allocation in the thermophilic Spanish juniper woodlands of Southern Spain. For Ecol Manage 270:85–93

    Article  Google Scholar 

  • Müller I, Schmid B, Weiner J (2000) The effect of nutrient availability on biomass allocation patterns in 27 species of herbaceous plants. Perspect Plant Ecol Evol Syst 3:115–127

    Article  Google Scholar 

  • Mugasha W, Bollandsås A, Eid T (2013) Relationships between diameter and height of trees for natural tropical forest in Tanzania. South For 75:221–237

    Google Scholar 

  • Murphy ST, Pommerening A (2010) Modelling the growth of Sitka spruce [Picea sitchensis (Bong.) Carr.] in Wales using Wenk’s model approach. Allg For und Jagdztg (German J For Res) 181:35–43

    Google Scholar 

  • Nicotra AB, Atkin OK, Bonser SP, Davidson AM, Finnegan EJ, Mathesius U et al (2010) Plant phenotypic plasticity in a changing climate. Trends Plant Sci 15:684–692

    Article  CAS  PubMed  Google Scholar 

  • Niklas KJ (1995) Size-dependent allometry of tree height, diameter and trunk-taper. Ann Bot 75:217–227

    Article  Google Scholar 

  • Nilson A (2014) On growth and structure of pine stands in Estonia (Männikute ehituse ja kasvu seaduspärasusi). In: Kurm M (ed) Pine in Estonia (Mänd Eestis). Vali Press OÜ, Tartu, pp 218–295 (in Estonian with summary in English)

    Google Scholar 

  • Novák J, Slodicák M, Dušek D, Kacálek D (2010) Long-term effect of thinning from above on forest-floor in Scots pine stands in Southern Moravia (Czech Republic). Austrian J For Sci 3:97–110

    Google Scholar 

  • O’Brien ST, Hubbell SP, Spiro P, Condit R, Foster RB (1995) Diameter, height, crown, and age relationship in eight neotropical tree species. Ecology 76:1926–1939

    Article  Google Scholar 

  • Pihur V, Datta S, Datta S (2014) RankAggreg: weighted rank aggregation. R package version 0.5. http://CRAN.R-project.org/package=RankAggreg. Accessed 1 Sept 2014

  • Pilli R, Anfodillo T, Carrer M (2006) Towards a functional and simplified allometry for estimating forest biomass. For Ecol Manage 237:583–593

    Article  Google Scholar 

  • Pommerening A, Muszta A (2015) Methods of modelling relative growth rate. For Ecosyst 2:5

    Article  Google Scholar 

  • Pommerening A, Muszta A (2016) Relative plant growth revisited: towards a mathematical standardisation of separate approaches. Ecol Model 320:383–392

    Article  Google Scholar 

  • Pretzsch H (2009) Forest dynamics, growth and yield; from measurement to model. Springer, Heidelberg

    Google Scholar 

  • Pretzsch H (2010) Re-evaluation of allometry: state-of-the-art and perspective regarding individuals and stands of woody plants. Prog Bot 71:339–369

    Article  Google Scholar 

  • Pretzsch H, Dieler J (2012) Evidence of variant intra- and interspecific scaling of tree crown structure and relevance for allometric theory. Oecologia 169:637–649

    Article  PubMed  PubMed Central  Google Scholar 

  • Pretzsch H, Uhl E, Biber P, Schütze G, Coates KD (2012) Change of allometry between coarse root and shoot of Lodgepole pine (Pinus contorta DOUGL. ex. LOUD) along a stress gradient in the sub-boreal forest zone of British Columbia. Scand J of Forest Res 27:532–544

    Article  Google Scholar 

  • Pretzsch H, Dauber E, Biber P (2013) Species-specific and ontogeny-related stem allometry of European forest trees: evidence from extensive stem analyses. For Sci 59:290–302

    Google Scholar 

  • R Core Team (2014) R: a language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. http://www.R-project.org/. Accessed  24 Apr 2015

  • Reich PB, Oleksyn J (2008) Climate warming will reduce growth and survival of Scots pine except in the far north. Ecol Lett 11:588–597

    Article  CAS  PubMed  Google Scholar 

  • Rice SA, Bazzaz FA (1989) Quantification of plasticity of plant traits in response to light intensity: comparing phenotypes at a common weight. Oecologia 78:502–507

    Article  Google Scholar 

  • Ryan MG, Yoder BJ (1997) Hydraulic limits to tree height and tree growth. Biosci J 47:235–242

    Article  Google Scholar 

  • Russo SE, Wiser SK, Coomes DA (2007) Growth-size scaling relationships of woody plant species differ from predictions of the Metabolic Ecology Model. Ecol Lett 10:889–901

    Article  PubMed  Google Scholar 

  • Saraçli S, Doğan N, Doğan İ (2013) Comparison of hierarchical cluster analysis methods by cophenetic correlation. J Inequal App 2013:203

    Article  Google Scholar 

  • Saundres MR, Wanger GR (2008) Height–diameter models with random coefficients and site variables for tree species on central Maine. Ann For Sci 65(2):1–10

    Google Scholar 

  • Seki T, Ohta S, Fujiwara T, Nakashizuka T (2013) Growth allocation between height and stem diameter in nonsuppressed reproducing Abies mariesii trees. Plant Species Biol 28:146–155

    Article  Google Scholar 

  • Schlichting CD (1986) The evolution of phenotypic plasticity in plants. Annu Rev Ecol Syst 17:667–693

    Article  Google Scholar 

  • Simpson SL, Edwards LJ, Muller KE, Sen PK, Styner MA (2010) A linear exponent AR(1) family of correlation structures. Stat Med 29:1825–1838

    Article  PubMed  PubMed Central  Google Scholar 

  • Sposito TC, Santos FAM (2001) Scaling of stem and crown in eight Cecropia (Cecropiaceae) species of Brazil. Am J Bot 88:939–949

    Article  CAS  PubMed  Google Scholar 

  • Strauss RE (1987) On allometry and relative growth in evolutionary studies. Syst Zool 36:72–75

    Article  Google Scholar 

  • Sumida A, Ito H, Isagi Y (1997) Trade-off between height growth and stem diameter growth for an evergreen Oak, Quercus glauca, in a mixed hardwood forest. Funct Ecol 11:300–309

    Article  Google Scholar 

  • Sumida A, Miyaura T, Torii H (2013) Relationships of tree height and diameter at breast height revisited: analyses of stem growth using 20-year data of an even-aged Chamaecyparis obtusa stand. Tree Physiol 33:106–118

    Article  PubMed  PubMed Central  Google Scholar 

  • Taeger S, Zang C, Liesebach M, Schneck V, Menzel A (2013) Impact of climate and drought events on the growth of Scots pine (Pinus sylvestris L.) provenances. For Ecol Manage 307:30–42

    Article  Google Scholar 

  • Tarand A, Jaagus J, Kallis A (2013) Eesti kliima minevikus ja tänapäeval [Estonian climate: past and present]. Tartu Ulikooli Kirjastus, Tartu

    Google Scholar 

  • Teissier G (1934) Dysharmonies et discontinuités dans la croissance. [Disharmonies and discontinuities in growth]. Actual Science et Industrielles, Hermann, Paris

  • Temesgen H, Zhang CH, Zhao XH (2014) Modelling tree height–diameter relationships in multi-species and multi-layered forests: A large observational study from Northeast China. For Ecol Manage 316:78–89

    Article  Google Scholar 

  • Valinger E (1992) Effects of thinning and nitrogen fertilisation on stem growth and stem form of Pinus ylvestris trees. Scand J For Res 7:219–228

    Article  Google Scholar 

  • Vospernik S, Monserud RA, Sterba H (2010) Do individual tree growth models correctly represent height:diameter ratios of Norway spruce and Scots pine? For Ecol Manage 260:1735–1753

    Article  PubMed  PubMed Central  Google Scholar 

  • Vovides Alejandra G et al (2014) Morphological plasticity in mangrove trees: salinity-related changes in the allometry of Avicennia germinans. Trees 28(5):1413–1425

    Article  Google Scholar 

  • Wang X, Fang J, Tang Z, Zhu B (2006) Climatic control of primary forest structure and DBH-height allometry in Northeast China. For Ecol Manage 234:264–274

    Article  Google Scholar 

  • Waterman MS, Whiteman DE (1978) Estimation of probability densities by empirical density functions. Int J Math Educ Sci Technol 9:127–137

    Article  Google Scholar 

  • Watt MS, Kirschbaum MUF (2011) Moving beyond simple linear allometric relationships between tree height and diameter. Ecol Model 222:3910–3916

    Article  Google Scholar 

  • Webb AR (2003) Statistical pattern recognition. Appendix A: measures of dissimilarity, 2nd edn. Wiley, England, pp 419–429

    Google Scholar 

  • Weiner J, Fishman L (1994) Competition and allometry in Kochia scoparia. Ann Bot 73:263–271

    Article  Google Scholar 

  • Weiner J (2004) Allocation, plasticity and allometry in plants. Perspect Plant Ecol Evol Syst 6:207–215

    Article  Google Scholar 

  • Weng CF (2014) First order autoregressive mixed effects Zero Inflated Poisson model for longitudinal data-A Bayesian approach. PhD dissertation, pp 12

  • Wenk G (1978) Mathematische Formulierung von Wachstumsprozessen in der Forstwirtschaft. [Mathematical formulation of growth processes in forestry]. Beitr Forstwirtsch 1:25–30

    Google Scholar 

  • Wiklund K, Konoˆpka B, Nilsson LO (1995) Stem form and growth in Picea abies (L.) Karst. in response to water and mineral nutrient availability. Scand J For Res 10:326–332

    Article  Google Scholar 

  • Wood SN (2006) Generalized additive models: an introduction with R. Chapman & Hall/CRC, Boca raton

    Google Scholar 

  • Wood SN (2011) Fast stable restricted maximum likelihood and marginal likelihood estimation of semiparametric generalized linear models. J R Stat Soc B 73(1):3–36

    Article  Google Scholar 

  • Yang ZJ, Midmore DJ (2005) Modelling plant resource allocation and growth partitioning in response to environmental heterogeneity. Ecol Model 181:59–77

    Article  Google Scholar 

  • Yang L, Qin G, Zhao N, Wang C, Song G (2012) Using a generalized additive model with autoregressive terms to study the effects of daily temperature on mortality. BMC Med Res Methodol 12:165

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yokozawa M, Hara T (1995) Foliage profile, size structure and stem diameter-plant height relationship in crowded plant populations. Ann Bot 76:271–285

    Article  Google Scholar 

  • Zamora R, Gómez JM, Hódar JA, Castro J, García D (2001) Effect of browsing by ungulates on sapling growth of Scots pine in a Mediterranean environment: consequences for forest regeneration. For Ecol Manage 144:33–42

    Article  Google Scholar 

  • Zhang H, Zhou D, Huang Y et al (2008) Plasticity and allometry of meristem allocation in response to density in three annual plants with different architectures. Botany 86:1291–1298

    Article  Google Scholar 

  • Zohar Y, Karshon R (1984) Above-ground biomass of Eucalyptus camaldulensis Dehn. In Israel. S Afr For 128:26–29

    Google Scholar 

Download references

Acknowledgments

The authors are grateful to Kamil Bielak for making Polish stem analysis data available and for his helpful comments on the study development. The authors also thank Dušek David who kindly provided the Czech Republic time series data. The authors express appreciation to Andres Kiviste and Kalev Jõgiste for their recommendations and comments on an early version of the manuscript and to two anonymous referees for concise and constructive recommendations in improving the manuscript. The Estonian Science Foundation (Grant No. 8890) supported the initiation and data analysis of the study. The research and paper writing was supported by the EU Regional Development Foundation, Environmental Conservation and Environmental Technology R&D Program project BioAtmos (3.2.0802.11-0043) and by the Estonian Research Council (Institutional Research Funding IUT21-04).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Azimeh Motallebi.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Communicated by R. Matyssek.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Motallebi, A., Kangur, A. Are allometric relationships between tree height and diameter dependent on environmental conditions and management?. Trees 30, 1429–1443 (2016). https://doi.org/10.1007/s00468-016-1379-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00468-016-1379-4

Keywords

Navigation