Skip to main content
Log in

Growth patterns from different forest generations of Scots pine in Estonia

  • Special Feature: Original article
  • Approaches for forest disturbances studies: natural variability and tree regeneration
  • Published:
Journal of Forest Research

Abstract

There is strong evidence that climate change alters tree growth in boreal forests. In Estonia, the analysis of ring measurements has been a common method to study growth changes. In this study, annual height growth data from dominant or co-dominant Scots pine (Pinus sylvestris L.) trees were used to develop a growth model for three forest generations. Stem analysis was applied and annual height growth was measured as the distance between whorls, as detected by branch knots of whorls on the split stem surface. Retrospective analysis of height growth produced comparative trends for three different age groups. Statistical analyses were used to estimate the impact of different factors on growth. Annual height growth was considered the best indicator for detecting possible trends in the growth potential of trees. Study results indicate that three generations (separated by time periods of 30–40 years) showed significant differences in growth patterns caused by shifts in climatic factors and management regimes (anthropogenic and natural disturbances).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Ahas R, Aasa A (2006) The effects of climate change on the phenology of selected Estonian plant, bird and fish populations. Int J Biometeorol 51:17–26

    Article  PubMed  Google Scholar 

  • Ainsworth EA, Long SP (2005) What have we learned from 15 years of free-air CO2 enrichment (FACE)? A meta-analytic review of responses of photosynthesis, canopy properties and plant production to rising CO2. New Phytol 165:351–372

    Article  PubMed  Google Scholar 

  • Bontemps JD, Herve JC, Dhote JF (2009) Long-term changes in forest productivity: a consistent assessment in even-aged stands. For Sci 55:549–564

    Google Scholar 

  • Bontemps JD, Herve JC, Dhote JF (2010) Dominant radial and height growth reveal comparable historical variations for common beech in north-eastern France. For Ecol Manag 259:1455–1463

    Article  Google Scholar 

  • Clutter JL, Fortson JC, Pienaar LV, Brister GH, Bailey RL (1983) Timber management: a quantitative approach. Wiley, New York

    Google Scholar 

  • Curtis PS, Wang XZ (1998) A meta-analysis of elevated CO2 effects on woody plant mass, form and physiology. Oecologia 113:299–313

    Article  Google Scholar 

  • Danz NP, Reich PB, Frelich LE, Niemi GJ (2010) Vegetation controls vary across space and spatial scale in a historic grassland-forest biome boundary. Ecography. doi:10.1111/j.1600-0587.2010.06561.x

  • Elfving B, Tegnhammar L, Tveite B (1996) Studies on growth trends of forests in Sweden and Norway. In: Spiecker H, Mielikäinen K, Kohl M, Skovsgaard J (eds) Growth trends in European forests: studies from 12 countries. Springer, Berlin, pp 61–70

    Google Scholar 

  • EMHI (2011) Estonian climate. Estonian Meteorological and Hydrological Institute. http://www.emhi.ee/. Accessed 2 Feb 2010

  • Eriksson H, Johansson U (1993) Yields of Norway spruce (Picea abies (L.) Karst.) in two consecutive rotations in southwestern Sweden. Plant Soil 154:239–247

    Article  Google Scholar 

  • Frelich LE, Reich PB (2010) Will environmental changes reinforce the impact of global warming on the prairie-forest border of central North America? Front Ecol Environ 8:371–378. doi:10.1890/080191

    Article  Google Scholar 

  • Grissino-Mayer HD (2001) Evaluating crossdating accuracy: manual and tutorial for the computer program COFECHA. Tree-Ring Res 57:205–221

    Google Scholar 

  • Hari P, Nikinmaa E (2008) Response of boreal forest to climate change. In: Hari P, Kulmala L (eds) Boreal forest and climate change. Springer, Berlin, pp 499–503

  • Hari P, Arovaara H, Raunemaa T, Hautojärvi A (1984) Forest growth and the effect of energy production: a method for detecting trends in the growth potential of trees. Can J For Res 14:437–440

    Article  Google Scholar 

  • Hari P, Räisänen J, Nikinmaa E, Vesala T, Kulmala M (2008) Evaluation of the connections between boreal forest and climate change. In: Hari P, Kulmala L (eds) Boreal forest and climate change. Springer, Berlin, pp 519–528

  • Havimo M, Rikala J, Sirviö J, Sipi M (2008) Distributions of tracheid cross-sectional dimensions in different parts of Norway spruce stems. Silva Fenn 42:89–99

    Google Scholar 

  • Holmes RL (1983) Computer-assisted quality control in tree-ring dating and measurement. Tree-Ring Bull 43:69–78

    Google Scholar 

  • Kahle H-P, Karjalainen T, Schuck A, Ågren GI (eds) (2008) Causes and consequences of forest growth trends in Europe. EFI Res Rep No 21. Joensuu, Finland

  • Kangur A (2009) Long-term forest dynamics: permanent plot data for modeling. PhD thesis, Ecoprint, Tartu

  • Kangur A, Sims A, Jõgiste K, Kiviste A, Korjus H, von Gadow K (2007) Comparative modeling of stand development in Scots pine dominated forests in Estonia. For Ecol Manag 250:109–118

    Article  Google Scholar 

  • Karjalainen T, Spiecker H, Laroussinie O (eds) (1999) Causes and consequences of accelerating tree growth in Europe. EFI Proceedings No 27. Saarijärvi, Finland

  • Kiviste A (1997) Eesti riigimetsa puistute kõrguse, diameetri ja tagavara vanuseridade diferentsmudel 1984–1993. a. metsakorralduse takseerkirjelduste andmeil [difference equations of stand height, diameter and volume depending on stand age and site factors for Estonian state forests]. Eesti Põllumajandusülikooli teadustööde kogumik, 189, pp 63–75

  • Kiviste A (1999) Site index change in the 1950s–1990s according to Estonian Forest Inventory data. In: Karjalainen T, Spiecker H, Laroussinie O (eds.) Causes and consequences of accelerating tree growth. Eur For Inst Proc 27:87–100

  • Kiviste A, Kiviste K (2009) Algebraic difference equations for stand height, diameter, and volume depending on stand age and site factors for Estonian state forests. Math Comput For Nat-Res Sci 1:67–77

    Google Scholar 

  • Kiviste A, Alvares Gonzalez JG, Rojo Alboreca A, Ruiz Gonzalez AD (2002) Functiones de creciniento de aplicacion en el ambito forestal. MONOGRAFIAS INIA: FORESTAL 4, Madrid

  • Konôpka B, Pajtík J, Moravèíka M, Lukac M (2010) Biomass partitioning and growth efficiency in four naturally regenerated forest trees species. Basic Appl Ecol 11:234–243

    Article  Google Scholar 

  • Lebourgeois F, Becker M, Chevalier R, Dupouey J-L, Gilbert J-M (2000) Height and radial growth trends of Corsican pine in western France. Can J For Res 30:712–724

    Article  Google Scholar 

  • Lloyd AH, Bunn AG (2007) Response of the circumpolar boreal forest to 20th century climate variability. Environ Res Lett 2:045013. doi:10.1088/1748-9326/2/4/04513

  • Lloyd AH, Fastie CH (2002) Spatial and temporal variability in the growth and climate response of treeline trees in Alaska. Clim Change 52:481–509

    Article  Google Scholar 

  • Lopatin E (2007) Long-term trends in height growth of Picea obovata and Pinus sylvestris during the past 100 years in Komi Republic (north-western Russia). Scand J For Res 22:310–323

    Article  Google Scholar 

  • Mäkinen H, Isomäki A (2004) Thinning intensity and growth of Scots pine stands in Finland. For Ecol Manag 201:311–325

    Article  Google Scholar 

  • Mellert KH, Prietzel J, Straussberger R, Rehfuess KE (2004) Long-term nutritional trends of conifer stands in Europe: results from the RECOGNITION project. Eur J For Res 123:305–319

    CAS  Google Scholar 

  • Mielikäinen K, Sennov S (1996) Growth trends of forests in Finland and North-Western Russia. In: Spiecker H, Mielikäinen K, Köhl M, Skovsgaard JP (eds) Growth trends in European forests. Springer, Berlin, pp 19–27

    Google Scholar 

  • Mielikäinen K, Timonen M (1996) Growth trends of Scots pine (Pinus Sylvestris L.) in unmanaged and regularly managed stands in Southern and Central Finland. In: Spiecker H, Mielikäinen K, Köhl M, Skovsgaard JP (eds) Growth trends in European forests. Springer, Berlin, pp 41–60

    Google Scholar 

  • MMK (2008) Yearbook forest 2008. Keskkonnaministeerium. Metsakaitse- ja Metsauuenduskeskus, Tartu, Estonia

  • Nilson A, Kiviste A (1986) Reflection of environmental changes in models of forest growth composed using different methods. In: Antanaitis VV, Baltrunaitis RJ, Mastauskis MM, Juknis RA (eds) Monitoring of forest ecosystems. Abstacts of scientific conference, June 5–6, 1986. Kaunas-Akademija, Kaunas, pp 336–337 (in Russian)

  • Nilson A, Kiviste A, Korjus H, Mihkelson S, Etverk I, Oja T (1999) Impact of recent and future climate changes on Estonian forestry and adaptation tools. Clim Res 12:205–214

    Article  Google Scholar 

  • Pärn H (2008) Männipuistute radiaalkasvust muutuvates keskkonnatingimustes [Radial growth of pine stands in changing environmental conditions]. Metsanduslikud uurimused 48:41–52

    Google Scholar 

  • Pilcher JR (1990) Sample preparation, cross-dating and measurement. In: Cook E, Kairiukstis L (eds) Methods of dendrochronology: applications in the environmental sciences. Kluwer, Dordrecht, pp 40–51

    Google Scholar 

  • Pretzsch H (2009) Forest dynamics, growth and yield: from measurement to model. Springer, Berlin

    Book  Google Scholar 

  • Rautiainen M, Nilson T, Lükk T (2009) Seasonal reflectance trends of hemiboreal birch forests. Remote Sens Environ 113:805–815

    Article  Google Scholar 

  • Richards FJ (1959) A flexible growth function for empirical use. J Exp Bot 10:290–300

    Article  Google Scholar 

  • Rinn F (2003) TSAP-Win. Time series analysis and presentation for dendrochronology and 409 related applications. User reference, Heidelberg

  • R Development Core Team (2009) R A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna. http://www.R-project.org. Accessed 28 June 2010

  • Salminen H, Jalkanen R, Lindholm M (2009) Summer temperature affects the ration of radial and height growth of Scots pine in northern Finland. Ann For Sci 66:810

    Article  Google Scholar 

  • Sims A, Hordo M, Kangur A, Kiviste A, Jõgiste K, Gadow Kv (2009) Tracking disturbances induced changes in stand development on irregular measurement intervals in the Järvselja forest experiments. Balt For 15:151–160

    Google Scholar 

  • Sinkevich SM, Lindholm M (1996) Short- and long-term natural trends of Scots pine (Pinus sylvestris L.) radial growth in North- and Mid-Taiga forests in Karelia. In: Spiecker H, Mielikäinen K, Köhl M, Skovsgaard JP (eds) Growth trends in European forests. Springer, Berlin, pp 29–40

    Google Scholar 

  • Spiecker H (1999) Overview of recent growth trends in European forests. Water Air Soil Poll 116:33–46

    Article  CAS  Google Scholar 

  • Solberg B, Moiseleyev A, Kallio AMI (2003) Economic impacts of accelerating forest growth in Europe. For Policy Econ 5:157–171

    Google Scholar 

  • Untheim H (1996) Has site productivity changed? A case study in the Eastern Swabian Alps, Germany. In: Spiecker H, Mielikäinen K, Köhl M, Skovsgaard JP (eds) Growth trends in European forests. Springer, Berlin, pp 133–147

    Google Scholar 

  • Wenk G, Vogel M (1996) Height growth investigations of Norway spruce (Picea abies [L.] Karst.) in the Eastern Part of Germany during the last century. In: Spiecker H, Mielikäinen K, Köhl M, Skovsgaard JP (eds) Growth trends in European forests. Springer, Berlin, pp 99–106

    Google Scholar 

  • Spiecker H, Mielikäinen K, Köhl M, Skovsgaard JP (eds) (1996) Growth trends in European forests. Springer, Berlin, pp 7–18

  • Wild M, Gilgen H, Roesch A, Ohmura A, Long CN, Dutton EG, Forgan B, Kallis A, Russak V, Tsvetkov A (2005) From dimming to brightening: decadal changes in solar radiation at Earth’s surface. Science 308:847–850

    Article  PubMed  CAS  Google Scholar 

  • Wood SN (2006) Generalized additive models: an introduction with R. Chapman and Hall/CRC Press, Virginia Beach

  • Zeide B (1993) Analysis of growth equations. For Sci 39:594–616

    Google Scholar 

  • Zetterberg P, Eronen M, Lindholm M (1996) Construction of a 7500-year tree-ring record for Scots Pine (Pinus sylvestris L.) in northern Fennoscandia and its application to growth variation and palaeoclimatic studies. In: Spiecker H, Mielikäinen K, Köhl M, Skovsgaard JP (eds) Growth trends in European forests. Springer, Berlin, pp 7–18

    Google Scholar 

Download references

Acknowledgments

This study was supported by Järvselja Training and Experimental Forest Centre, Estonian Environmental Investment Centre, State Forest Management Centre, Metsämiesten Säätiö and The Ministry of Education and Research (project SF0170014s08 and grant no ETF8890). We are very grateful to Lee E. Frelich, University of Minnesota, for discussion and language correction.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sandra Metslaid.

About this article

Cite this article

Metslaid, S., Sims, A., Kangur, A. et al. Growth patterns from different forest generations of Scots pine in Estonia. J For Res 16, 237–243 (2011). https://doi.org/10.1007/s10310-011-0275-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10310-011-0275-4

Keywords

Navigation