Skip to main content

Advertisement

Log in

Geomorphological-related heterogeneity as reflected in tree growth and its relationships with climate of Monte Desert Prosopis flexuosa DC woodlands

  • Original Paper
  • Published:
Trees Aims and scope Submit manuscript

Abstract

Key message

Across the Central Monte Desert district in Argentina, landform and soil variability drive radial growth of Prosopis flexuosa and its relation with precipitation.

Abstract

Desert forests grow under diverse ecological conditions, mainly resulting from the spatial heterogeneity of drylands with consequences on tree growth and its interactions with climate. In the Monte Desert, geomorphological processes generate landform and soil variability, determining the distribution and growth of plant species. Prosopis flexuosa DC., a dominant tree species in the Central Monte Desert, grows in territories characterized by a high variability of landform and soil. We applied classical dendrochronological and statistical analysis to disentangle the effect of spatial heterogeneity upon the species radial growth and its further relation with precipitation fluctuations. Trees from 11 plots distributed in seven P. flexuosa forests encompassing the most important geomorphological/landform units in the Central Monte Desert were analyzed. Tree-ring development at both high and low frequencies reflects spatial landform variability. Soil heterogeneity drives ring growth within landform. Regionally, precipitation influences radial growth at the beginning and the end of the growing season, while locally dependent mechanisms related to landform/soil variability emerged. In this sense, the negative influence of late-summer precipitation found for a riparian chronology is a function of soil permeability. Ring growth at the paleo-river environment depends on late spring and early mid-summer precipitation, with within-landform differences probably related to soil heterogeneity. In the case of inter-dune and lowland units, radial growth depends on early spring rainfall. Our findings highlight the influence of the heterogeneity of desert environments on tree growth. The information is relevant to management and conservation policies, particularly for the forests of P. flexuosa in Argentine Monte.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Abraham E (2000) Geomorfología de la Provincia de Mendoza, In: Abraham E and Martínez FM (Eds). Recursos y Problemas Ambientales de las Zonas Áridas. Primera Parte: Provincias de Mendoza, San Juan y La Rioja. TOMO I: Caracterización Ambiental. GTZ, IDR (Univ. Granada), IADIZA, SDSyPA. Argentina: 29–48

  • Abraham EM, Prieto R (1991) Aportes de la geografía histórica para el estudio de los procesos de cambios en los paisajes. El caso de Guanacache. Mendoza. Argentina. Bamberger Geographische Schriften Bd. Bamberg 11: 309–336

  • Abraham E, del Valle HF, Roig F, Torres L, Ares JO, Coronato F, Godagnone R (2009) Overview of the geography of the Monte Desert biome (Argentina). J Arid Environ 73(2):144–153

    Article  Google Scholar 

  • Aguiar M, Sala OE (1999) Patch structure, dynamics and implications for the functioning of arid ecosystems. Trends Ecol Evol 14(7):273–277

    Article  PubMed  Google Scholar 

  • Alvarez JA, Villagra PE (2009) Prosopis flexuosa DC. (Fabaceae, Mimosoideae). Kurtziana 35(1):47–61

    Google Scholar 

  • Ansley RJ, Boutton TW, Jacoby PW (2007) Mesquite root distribution and water use efficiency in response to long-term soil moisture manipulations. Proceedings: Shrubland dynamics-fire and water. USDA Forest Service RMRS-P-47, Fort Collins, 96–103

  • Bagnouls F, Gaussen H (1953) Saison sèche et indice xérothermique. Bull Soc Hist Nat de Toulouse 88:193–240

    Google Scholar 

  • Biondi F, Waikul K (2004) DENDROCLIM2002: A C++ program for statistical calibration of climate signals in tree-ring chronologies. Comput Geosci 30(3):303–311

    Article  Google Scholar 

  • Bisigato AJ, Villagra PE, Ares JO, Rossi BE (2009) Vegetation heterogeneity in Monte Desert ecosystems: a multi-scale approach linking patterns and processes. J Arid Environ 73(2):182–191

    Article  Google Scholar 

  • Blasing TJ, Solomon AM, Duvick DN (1984) Response functions revisited. Tree-Ring Bull 44:1–15

    Google Scholar 

  • Boulanger JP, Martinez F, Segura EC (2006) Projection of future climate change conditions using IPCC simulations, neural networks and Bayesian statistics. Part 1: temperature mean state and seasonal cycle in South America. Clim Dyn 27(2–3):233–259

    Article  Google Scholar 

  • Brunke M, Gonser TOM (1997) The ecological significance of exchange processes between rivers and groundwater. Freshw Biol 37(1):1–33

    Article  Google Scholar 

  • Bunn AG, Waggoner LA, Graumlich LJ (2005) Topographic mediation of growth in high elevation foxtail pine (Pinus balfouriana Grev. et Balf.) forests in the Sierra Nevada, USA. Global Ecol Biogeogr 14:103–114

    Article  Google Scholar 

  • Bunn AG, Hughes MK, Salzer MW (2011) Topographically modified tree-ring chronologies as a potential means to improve paleoclimate inference. A letter. Clim Change 105:627–634

    Article  Google Scholar 

  • Burkart A (1976) A monograph of the genus Prosopis (Leguminosae subfam. Mimosoideae). J Arnold Arboretum 57:450–455

    Google Scholar 

  • Cabrera AL (1976) Regiones Fitogeográficas Argentinas. Fascículo 1. In: Kugler WF (ed) Enciclopedia Argentina de Agricultura y Jardinería, Buenos Aires, vol. 2, p 85

  • Callaway RM (1998) Competition and facilitation on elevation gradients in subalpine forests of the northern Rocky Mountains, USA. Oikos 82(3):561–573

    Article  Google Scholar 

  • Chapin FS III, Matson PA (2011) Principles of terrestrial ecosystem ecology. Springer, New York

    Google Scholar 

  • Cook ER (1985) A time series analysis approach to tree ring standardization. PhD Thesis, Lamont-Doherty Geological Observatory, New York

  • Cook ER (1987) The decomposition of tree-ring series for environmental studies. Tree-Ring Bull 47:37–59

    Google Scholar 

  • Cook ER, Krusic PJ (2006) ARSTAN 41: a tree-ring standardization program based on detrending and autoregressive time series modeling, with interactive graphics. Tree-Ring Laboratory, Lamont Doherty Earth Observatory of Columbia University, New York

    Google Scholar 

  • Ehleringer JR, Cooper TA (1988) Correlations between carbon isotope ratio and microhabitat in desert plants. Oecologia 76(4):562–566

    Article  Google Scholar 

  • Ferrero ME, Villalba R, De Membiela M, Ripalta A, Delgado S, Paolini L (2013) Tree-growth responses across environmental gradients in subtropical Argentinean forests. Plant Ecol 214(11):1321–1334

    Article  Google Scholar 

  • Fritts HC (1976) Tree rings and climate. Academic Press, London

    Google Scholar 

  • Fritts HC, Smith DG, Cardis JW, Budelsky CA (1965) Tree-ring characteristics along a vegetation gradient in northern Arizona. Ecology 46(4):394–401

    Article  Google Scholar 

  • Giantomasi MA (2011) Crecimiento de Prosopis flexuosa DC en relación a un gradiente de déficit hídrico en la zona Árida-Semiárida del centro de Argentina. PhD Dissertation. Universidad Nacional de Cuyo, Mendoza, Argentina, p 141

  • Giantomasi MA, Roig-Juñent F, Patón-Domínguez D, Massaccesi G (2012) Environmental modulation of the seasonal cambial activity in Prosopis flexuosa DC trees from the Monte woodlands of Argentina. J Arid Environ 76:17–22

    Article  Google Scholar 

  • Giantomasi MA, Roig-Juñent FA, Villagra PE (2013) Use of differential water sources by Prosopis flexuosa DC: a dendroecological study. Plant Ecol 214(1):11–27

    Article  Google Scholar 

  • Green DS, Hawkins CD (2005) Competitive interactions in sub-boreal birch-spruce forests differ on opposing slope aspects. For Ecol Manage 214(1):1–10

    Article  Google Scholar 

  • Guiot J (1991) The bootstrapped response function. Tree-Ring Bull 51:39–41

    Google Scholar 

  • Holmes RL (1983) Computer-assisted quality control in tree-ring dating and measurement. Tree-Ring Bull 43:69–78

    Google Scholar 

  • Holmes RL (1999) Dendrochronological Program Library (DPL). Users Manual, Laboratory of Tree-Ring Research, University of Arizona, Tucson, Arizona, USA

  • IPCC WG I (2007) Climate Change 2007: The Physical Science Basis Contribution of Working Group. In: Solomon S, Qin D, Manning M, Chen Z, Marquis M, Averyt KB, Tignor M, Miller HL (eds) Fourth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge University Press, Cambridge

    Google Scholar 

  • Jobbágy EG, Nosetto MD, Villagra PE, Jackson RB (2011) Water subsidies from mountains to deserts: their role in sustaining groundwater-fed oases in a sandy landscape. Ecol Appl 21(3):678–694

    Article  PubMed  Google Scholar 

  • Kozlowski TT (1997) Responses of woody plants to flooding and salinity. Physiology monograph 1. Heron Publishing, Victoria, p 29

    Google Scholar 

  • Labraga JC, Villalba R (2009) Climate in the Monte Desert: past trends, present conditions, and future projections. J Arid Environ 73(2):154–163

    Article  Google Scholar 

  • Legendre P, Legendre L (1998) Numerical ecology: second English edition. Developments in environmental modelling 20. Elsevier, Amsterdam, The Netherlands

    Google Scholar 

  • Liang E, Shao X, Eckstein D, Huang L, Liu X (2006) Topography-and species-dependent growth responses of Sabina przewalskii and Picea crassifolia to climate on the northeast Tibetan Plateau. For Ecol Manage 236(2):268–277

    Article  Google Scholar 

  • Martínez AJ, López-Portillo J (2003) Allometry of Prosopis glandulosa var. torreyana along a topographic gradient in the Chihuahuan desert. J Veg Sci 14(1):111–120

    Google Scholar 

  • Miller D, Archer SR, Zitzer SF, Longnecker MT (2001) Annual rainfall, topoedaphic heterogeneity and growth of an arid land tree (Prosopis glandulosa). J Arid Environ 48(1):23–33

    Article  Google Scholar 

  • Morello J (1958) La Provincia Fitogeográfica del Monte. Tucumán, Opera Lilloana II, p 155

  • Nicolini G, Tarchiani V, Saurer M, Cherubini P (2010) Wood-growth zones in Acacia seyal Delile in the Keita Valley, Niger: is there any climatic signal? J Arid Environ 74(3):355–359

    Article  Google Scholar 

  • Noy-Meir I (1973) Desert ecosystems: environment and producers. Annu Rev Ecol Syst 4:25–51

    Article  Google Scholar 

  • Oberhuber W, Kofler W (2000) Topographic influences on radial growth of Scots pine (Pinus sylvestris L.) at small spatial scales. Plant Ecol 146(2):229–238

    Article  Google Scholar 

  • Orwig DA, Abrams MD (1997) Variation in radial growth responses to drought among species, site, and canopy strata. Trees 11(8):474–484

    Article  Google Scholar 

  • Pinheiro J, Bates D, DebRoy S, Sarkar D, the R Development Core Team (2013). nlme: Linear and Nonlinear Mixed Effects Models. R package version 3.1-111

  • Roig FA (1993) Aportes a la etnobotánica del género Prosopis. In: IADIZA (ed) Contribuciones Mendocinas a la Quinta Reunión Regional para América Latina y el Caribe de la Red de Forestación del CIID. Conservación y Mejoramiento de Especies del Género Prosopis. Mendoza, Argentina, pp 99–119

  • Roig FA, Berra A, González Loyarte M, Martínez Carretero E, Wuilloud C (1992) La Travesía de Guanacache, tierra forestal. Multequina 1:83–91

    Google Scholar 

  • Rossi BE, Villagra PE (2003) Effects of Prosopis flexuosa on soil properties and the spatial pattern of understorey species in arid Argentina. J Veg Sci 14(4):543–550

    Google Scholar 

  • Rubio MC, Soria D, Salomón MA, Abraham E (2009) Delimitación de unidades geomorfológicas mediante la aplicación de técnicas de procesamiento digital de imágenes y SIG. Área no irrigada del departamento de Lavalle, Mendoza. Proyección 2:1–33

    Google Scholar 

  • Rundel PW, Villagra PE, Dillon MO, Roig-Juñent S, Debandi G (2007) Arid and semi-arid ecosystems. In: Veblen TT, Young KR, Orme AR (eds) The physical geography of South America. Oxford University Press, USA

    Google Scholar 

  • Sass-Klaassen U, Couralet C, Sahle Y, Sterck FJ (2008) Juniper from Ethiopia contains a large-scale precipitation signal. Int J Plant Sci 169(8):1057–1065

    Article  Google Scholar 

  • Spurr SH, Barnes BV (1980) Forest ecology (3ra edición). Wiley, New York, p 687

    Google Scholar 

  • Stokes MA, Smiley TL (1968) An introduction to tree-ring dating. University of Arizona Press, Tucson

    Google Scholar 

  • R Development Core Team (2011) R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. ISBN 3-900051-07-0, URL http://www.R-project.org/

  • Vilela AE, Rennella MJ, Ravetta DA (2003) Responses of tree-type and shrub-type Prosopis (Mimosaceae) taxa to water and nitrogen availabilities. For Ecol Manage 186(1):327–337

    Article  Google Scholar 

  • Villagra PE, Boninsegna JA, Alvarez JA, Cony M, Cesca E, Villalba R (2005) Dendroecology of Prosopis flexuosa woodlands in the Monte desert: implications for their management. Dendrochronologia 22:209–213

    Article  Google Scholar 

  • Villagra PE, Defossé GE, Del Valle HF, Tabeni S, Rostagno M, Cesca E, Abraham E (2009) Land use and disturbance effects on the dynamics of natural ecosystems of the Monte Desert: implications for their management. J Arid Environ 73(2):202–211

    Article  Google Scholar 

  • Villalba R (1985) Xylem structure and cambial activity in Prosopis flexuosa D.C. IAWA Bull 6:119–130

    Article  Google Scholar 

  • Villalba R, Boninsegna JA (1989) Dendrochronological studies on Prosopis flexuosa D.C. IAWA Bull 10:155–160

    Article  Google Scholar 

  • Villalba R, Veblen TT (1997) Spatial and temporal variation in Austrocedrus growth along the forest-steppe ecotone in northern Patagonia. Can J For Res 27:580–597

    Google Scholar 

  • Villalba R, Veblen TT, Ogden J (1994) Climatic influences on the growth of subalpine trees in the Colorado Front Range. Ecology 75(5):1450–1462

    Article  Google Scholar 

  • Whitford WG (2002) Ecology of desert systems. Academic Press, London

    Google Scholar 

  • Wigley TML, Briffa KR, Jones PD (1984) On the average value of correlated time series, with applications in dendroclimatology and hydrometeorology. J Clim Appl Meteorol 23(2):201–213

    Article  Google Scholar 

  • Wu XB, Archer SR (2005) Scale-dependent influence of topography-based hydrologic features on patterns of woody plant encroachment in savanna landscapes. Landscape Ecol 20(6):733–742

    Article  Google Scholar 

Download references

Author contribution statement

Sergio Piraino designed the study, performed field work and statistical analysis and wrote the paper. Elena María Abraham contributed to design the study. Lita Diblasi contributed to perform the statistical analysis. Fidel Alejandro Roig-Juñent contributed to design the study and writing the manuscript.

Acknowledgments

The first author thanks CONICET for a PhD fellowship. The authors warmly thank the Aguero, Cordoba and Molina families for allowing sampling in their respective areas. Special thanks are due to Eduardo “Quique” Barrios, Hugo Debandi, Alberto Ripalta and Gualberto Zalazar for their field assistance. We thank the Dirección de Recursos Naturales Renovables of Mendoza province for allowing sampling. We would like to express our gratitude to the Communicating Editor and the anonymous reviewers for the detailed revision and constructive comments that greatly improved our manuscript.

Conflict of interest

The authors declare that they have no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sergio Piraino.

Additional information

Communicated by S. Leavitt.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Piraino, S., Abraham, E.M., Diblasi, A. et al. Geomorphological-related heterogeneity as reflected in tree growth and its relationships with climate of Monte Desert Prosopis flexuosa DC woodlands. Trees 29, 903–916 (2015). https://doi.org/10.1007/s00468-015-1173-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00468-015-1173-8

Keywords

Navigation