Skip to main content
Log in

Stem increment and hydraulic architecture of a boreal conifer (Larix sibirica) under contrasting macroclimates

  • Original Paper
  • Published:
Trees Aims and scope Submit manuscript

Abstract

Key message

Hydraulic conductivity and wood anatomical traits in Larix sibirica are correlated with macroclimate, and growing season precipitation in particular, along a precipitation gradient of 700 mm year −1.

Abstract

Empirical (K s) and theoretical (K p) sapwood area-specific hydraulic conductivity, hydraulically weighted (d h ) and simple (d) tracheid diameters as well as tracheid density (TD) in roots, stems, and branches were studied in Larix sibirica trees, the dominant conifer at the southern, drought-affected range limit of the boreal forest in Inner Asia. We compared the hydraulic architecture of L. sibirica in two stands in Mongolia to larch trees grown in Central Europe under moist conditions and related hydraulics to macroclimate (precipitation, temperature) and productivity (basal area increment, BAI). K s, K p, d h, and d correlated positively, and TD negatively with precipitation, temperature, and also BAI. Mean growing season precipitation (MGSP) seemed to affect the hydraulic traits more than temperature. A meta-analysis covering data of 14 conifer species from the northern hemisphere revealed a general relationship between MGSP and hydraulic traits. In contrast to expectation, K p and d h did not show a steady decline from roots through the stem to branches in L. sibirica, but were of similar size or larger in the stem. Our results suggest that considerable plasticity in the hydraulic architecture is an important element of the drought adaptation of L. sibirica. It combines with drought-induced fine root abscission (as reported from earlier work) which may help to protect larger roots and the stem from cavitation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Antonova GF, Stasova VV (1997) Effects of environmental factors on wood formation in larch (Larix sibirica Ldb.) stems. Trees 11:462–468

    Google Scholar 

  • Araki NH, Khatab IA, Hemamali KK, Inomata N, Wang X-R, Szmidt AE (2008) Phylogeography of Larix sukaczewii Dyl. and Larix sibirica L. inferred from nucleotide variation of nuclear genes. Tree Genet Genom 4:611–623

    Article  Google Scholar 

  • Battulga P, Tsogtbaatar J, Dulamsuren C, Hauck M (2013) Equations for estimating the above-ground biomass of Larix sibirica in the forest-steppe of Mongolia. J For Res 24:431–437

    Article  CAS  Google Scholar 

  • Brodribb TJ, Feild TS (2000) Stem hydraulic supply is linked to leaf photosynthetic capacity: evidence from New Caledonian and Tasmanian rainforests. Plant Cell Environ 23:1381–1388

    Article  Google Scholar 

  • Brown HR (2013) The theory of the rise of sap in trees: some historical and conceptual remarks. Phys Persp 15:320–358

    Article  Google Scholar 

  • Bryukhanova M, Fonti P (2013) Xylem plasticity allows rapid hydraulic adjustment to annual climatic variability. Trees 27:485–496

    Article  Google Scholar 

  • Bucci S, Goldstein G, Meinzer F, Scholz F, Franco A, Bustamante M (2004) Functional convergence in hydraulic architecture and water relations of tropical savanna trees: from leaf to whole plant. Tree Physiol 24:891–899

    Article  CAS  PubMed  Google Scholar 

  • Cai J, Tyree MT (2010) The impact of vessel size on vulnerability curves: data and models for within-species variability in saplings of aspen, Populus tremuloides Michx. Plant Cell Environ 33:1059–1069

    Article  PubMed  Google Scholar 

  • Carlquist S (1977) Ecological factors in wood evolution: a floristic approach. Am J Bot 64:887–896

    Article  Google Scholar 

  • Charra-Vaskou K, Charrier G, Wortemann R, Beikircher B, Cochard H, Ameglio T, Mayr S (2012) Drought and frost resistance of trees: a comparison of four species at different sites and altitudes. Ann For Sci 69:325–333

    Article  Google Scholar 

  • Chenlemuge T, Hertel D, Dulamsuren C, Khishigjargal M, Leuschner C, Hauck M (2013) Extremely low fine root biomass in Larix sibirica forests at the southern drought limit of the boreal forest. Flora 208:488–496

    Article  Google Scholar 

  • Choat B, Ball MC, Luly JG, Holtum JA (2005) Hydraulic architecture of deciduous and evergreen dry rainforest tree species from north-eastern Australia. Trees 19:305–311

    Article  Google Scholar 

  • Choat B, Sack L, Holbrook NM (2007) Diversity of hydraulic traits in nine Cordia species growing in tropical forests with contrasting precipitation. New Phytol 175:686–698

    Article  PubMed  Google Scholar 

  • Corcuera L, Camarero JJ, Gil-Pelegrín E (2004) Effects of a severe drought on Quercus ilex radial growth and xylem anatomy. Trees 18:83–92

    Article  Google Scholar 

  • Creese C, Benscoter AM, Maherali H (2011) Xylem function and climate adaptation in Pinus. Am J Bot 98:1437–1445

    Article  PubMed  Google Scholar 

  • D’Arrigo R, Jacoby G, Pederson N, Frank D, Buckley B, Nachin B, Mijiddorj R, Dugarjav C (2000) Mongolian tree-rings, temperature sensitivity and reconstructions of Northern Hemisphere temperature. Holocene 10:669–672

    Article  Google Scholar 

  • De Grandpré L, Tardif JC, Hessl A, Pederson N, Conciatori F, Green TR, Oyunsanaa B, Baatarbileg N (2011) Seasonal shift in the climate responses of Pinus sibirica, Pinus sylvestris, and Larix sibirica trees from semi-arid, north-central Mongolia. Can J For Res 41:1242–1255

    Article  Google Scholar 

  • De Micco V, Aronne G, Baas P (2008) Wood anatomy and hydraulic architecture of stems and twigs of some Mediterranean trees and shrubs along a mesic-xeric gradient. Trees 22:643–655

    Article  Google Scholar 

  • Domec J-C, Gartner BL (2002) How do water transport and water storage differ in coniferous earlywood and latewood. J Exp Bot 53:2369–2379

    Article  CAS  PubMed  Google Scholar 

  • Domec J-C, Warren J, Meinzer F, Brooks J, Coulombe R (2004) Native root xylem embolism and stomatal closure in stands of Douglas-fir and ponderosa pine: mitigation by hydraulic redistribution. Oecologia 141:7–16

    Article  PubMed  Google Scholar 

  • Domec J-C, Lachenbruch B, Meinzer FC, Woodruff DR, Warren JM, McCulloh KA (2008) Maximum height in a conifer is associated with conflicting requirements for xylem design. Proc Natl Acad Sci USA 105:12069–12074

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Domec J-C, Warren JM, Meinzer FC, Lachenbruch B (2009) Safety factors for xylem failure by implosion and air-seeding within roots, trunks and branches of young and old conifer trees. IAWA J 30:100–120

    Article  Google Scholar 

  • Dulamsuren Ch, Hauck M, Bader M, Osokhjargal D, Oyungerel S, Nyambayar S, Runge M, Leuschner C (2009) Water relations and photosynthetic performance in Larix sibirica growing in the forest-steppe ecotone of northern Mongolia. Tree Physiol 29:99–110

    Article  PubMed  Google Scholar 

  • Dulamsuren Ch, Hauck M, Leuschner C (2010) Recent drought stress leads to growth reductions in Larix sibirica in the western Khentey, Mongolia. Global Change Biol 16:3024–3035

    Google Scholar 

  • Dulamsuren Ch, Wommelsdorf T, Zhao F, Xue Y, Zhumadilov B, Leuschner C, Hauck M (2013) Increased summer temperatures reduce the growth and regeneration of Larix sibirica in southern boreal forests of Eastern Kazakhstan. Ecosystems 16:1–14

    Article  Google Scholar 

  • Dulamsuren Ch, Khishigjargal M, Leuschner C, Hauck M (2014) Response of tree-ring width to climate warming and selective logging in larch forests of the Mongolian Altai. J Plant Ecol 7:24–38

    Article  Google Scholar 

  • Edwards WRN, Jarvis PG (1982) Relationship between water content, potential and permeability in stems of conifers. Plant Cell Environ 5:271–277

    Google Scholar 

  • Eilmann B, Weber P, Rigling A, Eckstein D (2006) Growth reactions of Pinus sylvestris L. and Quercus pubescens Willd. to drought years at a xeric site in Valais Switzerland. Dendrochronologia 23:121–132

    Article  Google Scholar 

  • Fonti P, von Arx G, García-González I, Eilmann B, Sass-Klaassen U, Gärtner H, Eckstein D (2010) Studying global change through investigation of the plastic responses of xylem anatomy in tree rings. New Phytol 185:42–53

    Article  PubMed  Google Scholar 

  • Fonti P, Bryukhanova MV, Myglan VS, Kirdyanov AV, Naumova OV, Vaganov EA (2013) Temperature-induced responses of xylem structure of Larix sibirica (Pinaceae) from the Russian Altay. Am J Bot 100:1332–1343

    Article  PubMed  Google Scholar 

  • González IG, Eckstein D (2003) Climatic signal of earlywood vessels of oak on a maritime site. Tree Physiol 23:497–504

    Article  PubMed  Google Scholar 

  • Gonzalez-Benecke CA, Martin TA, Peter GF (2010) Hydraulic architecture and tracheid allometry in mature Pinus palustris and Pinus elliottii trees. Tree Physiol 30:361–375

    Article  CAS  PubMed  Google Scholar 

  • Gunin PD, Vostokova EA, Dorofeyuk NI, Tarasov PE, Black CC (1999) Vegetation dynamics of Mongolia. Kluwer, Dordrecht

    Book  Google Scholar 

  • Hacke U, Sauter JJ (1996) Drought-induced xylem dysfunction in petioles, branches, and roots of Populus balsamifera L. and Alnus glutinosa (L.) Gaertn. Plant Physiol 111:413–417

    PubMed Central  CAS  PubMed  Google Scholar 

  • Hajek P, Leuschner C, Hertel D, Delzon S, Schuldt B (2014) Trade-offs between xylem hydraulic properties, wood anatomy and yield in Populus. Tree Physiol 34:744–756

    Article  PubMed  Google Scholar 

  • Hargrave K, Kolb K, Ewers F, Davis S (1994) Conduit diameter and drought-induced embolism in Salvia mellifera Greene (Labiatae). New Phytol 126:695–705

    Article  Google Scholar 

  • Joseph G, Kelsey RG, Thies WG (1998) Hydraulic conductivity in roots of ponderosa pine infected with black-stain (Leptographium wageneri) or annosus (Heterobasidion annosum) root disease. Tree Physiol 18:333–339

    Article  PubMed  Google Scholar 

  • Lens F, Luteyn JL, Smets E, Jansen S (2004) Ecological trends in the wood anatomy of Vaccinioideae (Ericaceae s.l.). Flora 199:309–319

    Article  Google Scholar 

  • Leuschner Ch, Backes K, Hertel D, Schipka F, Schmitt U, Terborg O, Runge M (2001) Drought responses at leaf, stem and fine root levels of competitive Fagus sylvatica L. and Quercus petraea (Matt.) Liebl. trees in dry and wet years. For Ecol Manage 149:33–46

    Article  Google Scholar 

  • Lintunen A, Kalliokoski T (2010) The effect of tree architecture on conduit diameter and frequency from small distal roots to branch tips in Betula pendula, Picea abies and Pinus sylvestris. Tree Physiol 30:1433–1447

    Article  PubMed  Google Scholar 

  • Liu H, Park Williams A, Allen CD, Guo D, Wu X, Anenkhonov OA, Liang E, Sandanov DV, Yin Y, Qi Z (2013) Rapid warming accelerates tree growth decline in semi-arid forests of Inner Asia. Global Change Biol 19:2500–2510

    Article  Google Scholar 

  • Lovisolo C, Schubert A (1998) Effects of water stress on vessel size and xylem hydraulic conductivity in Vitis vinifera L. J Exp Bot 49:693–700

    CAS  Google Scholar 

  • Maherali H, DeLucia EH (2000) Xylem conductivity and vulnerability to cavitation of ponderosa pine growing in contrasting climates. Tree Physiol 20:859–867

    Article  CAS  PubMed  Google Scholar 

  • Maherali H, DeLucia EH (2001) Influence of climate-driven shifts in biomass allocation on water transport and storage in ponderosa pine. Oecologia 129:481–491

    Article  CAS  PubMed  Google Scholar 

  • Maherali H, Pockman WT, Jackson RB (2004) Adaptive variation in the vulnerability of woody plants to xylem cavitation. Ecology 85:2184–2199

    Article  Google Scholar 

  • Maherali H, Moura CF, Caldeira MC, Willson CJ, Jackson RB (2006) Functional coordination between leaf gas exchange and vulnerability to xylem cavitation in temperate forest trees. Plant Cell Environ 29:571–583

    Article  PubMed  Google Scholar 

  • Mainiero R, Kazda M (2006) Depth-related fine root dynamics of Fagus sylvatica during exceptional drought. For Ecol Manage 237:135–142

    Article  Google Scholar 

  • Martínez-Vilalta J, Piñol J (2002) Drought-induced mortality and hydraulic architecture in pine populations of the NE Iberian Peninsula. For Ecol Manage 161:247–256

    Article  Google Scholar 

  • Martínez-Vilalta J, Prat E, Oliveras I, Piñol J (2002) Xylem hydraulic properties of roots and stems of nine Mediterranean woody species. Oecologia 133:19–29

    Article  PubMed  Google Scholar 

  • Martínez-Vilalta J, Sala A, Piñol J (2004) The hydraulic architecture of Pinaceae—a review. Plant Ecol 171:3–13

    Article  Google Scholar 

  • Martínez-Vilalta J, Cochard H, Mencuccini M, Sterck F, Herrero A, Korhonen J, Llorens P, Nikinmaa E, Nolè A, Poyatos R (2009) Hydraulic adjustment of Scots pine across Europe. New Phytol 184:353–364

    Article  PubMed  Google Scholar 

  • Matyssek R, Schulze E (1988) Carbon uptake and respiration in above-ground parts of a Larix decidua × leptolepis tree. Trees 2:233–241

    Article  Google Scholar 

  • Mayr S, Schwienbacher F, Bauer H (2003) Winter at the alpine timberline. Why does embolism occur in Norway spruce but not in stone pine? Plant Physiol 131:780–792

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Melcher PJ, Michele Holbrook N, Burns MJ, Zwieniecki MA, Cobb AR, Brodribb TJ, Choat B, Sack L (2012) Measurements of stem xylem hydraulic conductivity in the laboratory and field. Methods Ecol Evol 3:685–694

    Article  Google Scholar 

  • Mencuccini M, Grace J (1995) Climate influences the leaf area/sapwood area ratio in Scots pine. Tree Physiol 15:1–10

    Article  PubMed  Google Scholar 

  • Nardini A, Salleo S (2000) Limitation of stomatal conductance by hydraulic traits: sensing or preventing xylem cavitation? Trees 15:14–24

    Article  Google Scholar 

  • Nygren P, Pallardy SG (2008) Applying a universal scaling model to vascular allometry in a single-stemmed, monopodially branching deciduous tree (Attim’s model). Tree Physiol 28:1–10

    Article  PubMed  Google Scholar 

  • Oliveras I, Martínez-Vilalta J, Jimenez-Ortiz T, Lledó MJ, Escarré A, Piñol J (2003) Hydraulic properties of Pinus halepensis, Pinus pinea and Tetraclinis articulata in a dune ecosystem of Eastern Spain. Plant Ecol 169:131–141

    Article  Google Scholar 

  • Piñol J, Sala A (2000) Ecological implications of xylem cavitation for several Pinaceae in the Pacific Northern USA. Funct Ecol 14:538–545

    Article  Google Scholar 

  • Rood SB, Patiño S, Coombs K, Tyree MT (2000) Branch sacrifice: cavitation-associated drought adaptation of riparian cottonwoods. Trees 14:248–257

    Article  Google Scholar 

  • Ryan MG, Phillips N, Bond BJ (2006) The hydraulic limitation hypothesis revisited. Plant Cell Environ 29:367–381

    Article  PubMed  Google Scholar 

  • Sala A, Woodruff DR, Meinzer FC (2012) Carbon dynamics in trees: feast or famine? Tree Physiol 32:764–775

    Article  CAS  PubMed  Google Scholar 

  • Santiago LS, Goldstein G, Meinzer FC, Fisher JB, Machado K, Woodruff D, Jones T (2004) Leaf photosynthetic traits scale with hydraulic conductivity and wood density in Panamanian forest canopy trees. Oecologia 140:543–550

    Article  CAS  PubMed  Google Scholar 

  • Sass U, Eckstein D (1995) The variability of vessel size in beech (Fagus sylvatica L.) and its ecophysiological interpretation. Trees 9:247–252

    Article  Google Scholar 

  • Schuldt B, Leuschner C, Brock N, Horna V (2013) Changes in wood density, wood anatomy and hydraulic properties of the xylem along the root-to-shoot flow path in tropical rainforest trees. Tree Physiol 33:161–174

    Article  PubMed  Google Scholar 

  • Schulze E-D, Schulze W, Koch H, Arneth A, Bauer G, Kelliher F, Hollinger D, Vygodskaya N, Kusnetsova W, Sogatchev A (1995) Aboveground biomass and nitrogen nutrition in a chronosequence of pristine Dahurian Larix stands in eastern Siberia. Can J For Res 25:943–960

    Article  Google Scholar 

  • Sevanto S, McDowell NG, Dickman LT, Pangle R, Pockman WT (2014) How do trees die? A test of the hydraulic failure and carbon starvation hypotheses. Plant Cell Environ 37:153–161

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Sperry JS, Ikeda T (1997) Xylem cavitation in roots and stems of Douglas-fir and white fir. Tree Physiol 17:275–280

    Article  PubMed  Google Scholar 

  • Sperry JS, Nichols KL, Sullivan JE, Eastlack SE (1994) Xylem embolism in ring-porous, diffuse-porous, and coniferous trees of northern Utah and interior Alaska. Ecology 75:1736–1752

    Article  Google Scholar 

  • Sterck FJ, Martínez-Vilalta J, Mencuccini M, Cochard H, Gerrits P, Zweifel R, Herrero A, Korhonen JFJ, Llorens P, Nikinmaa E, Nolè A, Poyatos R, Ripullone F, Sass-Klaassen U (2012) Understanding trait interactions and their impacts on growth in Scots pine branches across Europe. Funct Ecol 26:541–549

    Article  Google Scholar 

  • Stout DL, Sala A (2003) Xylem vulnerability to cavitation in Pseudotsuga menziesii and Pinus ponderosa from contrasting habitats. Tree Physiol 23:43–50

    Article  PubMed  Google Scholar 

  • Thibeault-Martel M, Krause C, Morin H, Rossi S (2008) Cambial activity and intra-annual xylem formation in roots and stems of Abies balsamea and Picea mariana. Ann Bot 102:667–674

    Article  PubMed Central  PubMed  Google Scholar 

  • Tyree MT (1997) The cohesion-tension theory of sap ascent: current controversies. J Exp Bot 48:1753–1765

    CAS  Google Scholar 

  • Tyree M (2003) Hydraulic limits on tree performance: transpiration, carbon gain and growth of trees. Trees 17:95–100

    Google Scholar 

  • Tyree MT, Ewers FW (1991) The hydraulic architecture of trees and other woody plants. New Phytol 119:345–360

    Article  Google Scholar 

  • Tyree MT, Zimmermann MH (2002) Xylem Structure and The Ascent of Sap, 2nd edn. Springer, Berlin

    Book  Google Scholar 

  • White F (1991) Viscous fluid flow. MacGraw, New York

    Google Scholar 

Download references

Author contribution statement

All authors designed the study and wrote the paper. TC, CD and MH performed field work. TC and BS conducted laboratory work. TC, CD, MH and BS analyzed data. DH performed the meta-analysis.

Acknowledgments

The study was supported by a grant from the Volkswagen Foundation to M. Hauck, Ch. Dulamsuren and Ch. Leuschner for the project ‘Forest regeneration and biodiversity at the forest-steppe border of the Altai and Khangai Mountains under contrasting developments of livestock numbers in Kazakhstan and Mongolia’. Tselmeg Chenlemuge was funded by a scholarship of the China Scholarship Council (CSC). We thank the Altai Tavan Bogd National Park (Ulgii) for permissions to carry out the field work and are very grateful that Hildegard Neeser allowed us to sample her trees at the Giegengrün plantation in the Ore Mountains (http://www.sibirische-laerche-pflanzensamen.de). We thank Claus Döring (University of Göttingen) for modeling the climate date for the Giegengrün site.

Conflict of interest

The authors declare that they have no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Markus Hauck.

Additional information

Communicated by M. Zwieniecki.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 95 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chenlemuge, T., Schuldt, B., Dulamsuren, C. et al. Stem increment and hydraulic architecture of a boreal conifer (Larix sibirica) under contrasting macroclimates. Trees 29, 623–636 (2015). https://doi.org/10.1007/s00468-014-1131-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00468-014-1131-x

Keywords

Navigation