Skip to main content
Log in

Development and validation of a new statistical model for prognosis of long-term graft function after pediatric kidney transplantation

  • Original Article
  • Published:
Pediatric Nephrology Aims and scope Submit manuscript

Abstract

Background

No adequate statistical model has been established to estimate future glomerular filtration rate (GFR) in children after kidney transplantation (KTX). Equations based on simple linear regression analysis as used in adults are not established in children.

Methods

An optimal prognostic model of GFR was generated for 63 children at 3–7 years after KTX. The main regression model for prediction of the log-transformed GFR (logGFR) included the mean monthly change of GFR in the period 3–24 months after KTX (∆GFR), the baseline GFR at 3 months (bGFR), and an intercept. Additionally, we investigated if the inclusion of cofactors leads to more precise predictions. The model was validated by leave-one-out cross-validation for years 3–7 after KTX. Prognostic quality was determined with the mean squared error (MSE) and mean absolute error (MAE). Results were compared with the simple linear regression model used in adults.

Results

The following statistical model was calculated for every prognosis year (i = 3, …, 7):

$$ {{\mathrm{Y}}_i}={\beta_{i0 }}+{\beta_{i1 }}\cdot {{\mathrm{X}}_{i1 }}+{\beta_{i2 }}\cdot {{\mathrm{X}}_{i2 }}+{\varepsilon_i} $$
$$ \log (\mathrm{GF}{{\mathrm{R}}_i})={\beta_{i0 }}+{B_{i1 }}\cdot \varDelta \mathrm{GFR}+{\beta_{i2 }}\cdot \mathrm{bGFR} $$

Comparison of the new statistical model and the simple linear model for adults led to relevantly lower MSEs and MAEs for the new model (year 7: New model: MSE 0.1, MAE 0.3/adult model: MSE 1069, MAE 18). The benefit of inclusion of cofactors was not relevant.

Conclusions

This statistical model is able to predict long-term graft function in children with very high precision.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

Abbreviations

GFR:

Glomerular filtration rate

KTX:

Kidney transplantation

MAE:

Mean absolute error

MDRD:

Modification of Diet in Renal Disease

MSE:

Mean squared error

References

  1. Harmon WE, McDonald RA, Reyes JD, Bridges ND, Sweet SC, Sommers CM, Guidinger MK (2005) Pediatric transplantation, 1994–2003. Am J Transplant 5:887–903

    Article  PubMed  Google Scholar 

  2. Freier C, Kugler C, Offner G (2006) Prospektive Intervention zur Verbesserung krankheitsspezifischen Wissens bei Jugendlichen nach Nierentransplantation. Nieren- und Hochdruckkrankheiten 36:519–525

    Google Scholar 

  3. Meyers KEC, Thomson PD, Weiland H (1996) Noncompliance in children and adolescents after renal transplantation. Transplantation 62:186–189

    Article  PubMed  CAS  Google Scholar 

  4. Cochat P, Fargue S, Mestrallet G, Jungraithmayr T, Koch-Nogueira P, Ranchin B, Zimmerhackl LB (2009) Disease recurrence in paediatric renal transplantation. Pediatr Nephrol 24:2097–2108

    Article  PubMed  Google Scholar 

  5. Parada B, Figueiredo A, Nunes P, Bastos C, Macário F, Roseiro A, Dias V, Rolo F, Mota A (2005) Pediatric renal transplantation: comparative study with renal transplantation in the adult population. Transplant Proc 37:2771–2774

    Article  PubMed  CAS  Google Scholar 

  6. Pape L, Ehrich JHH, Offner G (2007) Young for young! Mandatory age-matched exchange of paediatric kidneys. Pediatr Nephrol 22:477–479

    Article  PubMed  Google Scholar 

  7. Pape L, Hoppe J, Becker T, Ehrich JH, Neipp M, Ahlenstiel T, Offner G (2006) Superior long-term graft function and better growth of grafts in children receiving kidneys from paediatric compared with adult donors. Nephrol Dial Transplant 21:2596–2600

    Article  PubMed  CAS  Google Scholar 

  8. Filler G, Sharma AP (2008) How to monitor renal function in pediatric solid organ transplant recipients. Pediatr Transplant 12:393–401

    Article  PubMed  Google Scholar 

  9. Filler G, Lepage N (2003) Should the Schwartz formula for estimation of GFR be replaced by cystatin C formula? Pediatr Nephrol 18:981–985

    Article  PubMed  Google Scholar 

  10. Schwartz GJ, Munoz A, Schneider MF, Mak RH, Kaskel F, Warady BA, Furth SL (2009) New equations to estimate GFR in children with CKD. J Am Soc Nephrol 20:629–637

    Article  PubMed  Google Scholar 

  11. Levey AS, Bosch JP, Lewis JB, Greene T, Rogers N, Roth D (1999) A more accurate method to estimate glomerular filtration rate from serum creatinine: a new prediction equation. Modification of Diet in Renal Disease Study Group. Ann Intern Med 130:461–470

    PubMed  CAS  Google Scholar 

  12. Cockcroft DW, Gault MH (1976) Prediction of creatinine clearance from serum creatinine. Nephron 16:31–41

    Article  PubMed  CAS  Google Scholar 

  13. Apperloo AJ, de Zeeuw D, Donker AJ, de Jong PE (1996) Precision of glomerular filtration rate determinations for long-term slope calculations is improved by simultaneous infusion of 125I-iothalamate and 131I-hippuran. J Am Soc Nephrol 7:567–572

    PubMed  CAS  Google Scholar 

  14. Harrell FE (2001) Regression modeling strategies. Springer, Berlin Heidelberg New York, pp 93–94

    Book  Google Scholar 

  15. Hossain MA, Zahran A, Emara M, Shoker A (2007) Accuracy to estimate rates of decline in glomerular filtration rate in renal transplant patients. Transplantation 84:490–497

    Article  PubMed  Google Scholar 

  16. Pape L, Offner G, Ehrich JH, de Boer J, Persijn GG (2004) Renal allograft function in matched pediatric and adult recipient pairs of the same donor. Transplantation 77:1191–1194

    Article  PubMed  Google Scholar 

  17. Gellert S, Devaux S, Schönberger B, May G (1996) Donor age and graft function. Pediatr Nephrol 10:716–719

    Article  PubMed  CAS  Google Scholar 

  18. Lezaic V, Naumovic R, Stanic M, Marinkovic J, Kostic M, Peco-Antic A, Djukanovic L (2007) Factors affecting graft function in pediatric and adult recipients of adult live donor kidney transplants. Pediatr Transplant 11:906–913

    Article  PubMed  Google Scholar 

  19. Dubourg L, Cochat P, Hadj-Aïssa A, Tydén G, Berg UB (2002) Better long-term functional adaptation to the child’s size with pediatric compared to adult kidney donors. Kidney Int 62:1454–1460

    Article  PubMed  Google Scholar 

  20. Harmon W, Fine R, Alexander S, Warady B, Benfield M, Goldstein S (2008) North American Pediatric Renal Trials and Collaborative Studies – 2008 Annual Report

  21. Smith JM, Stablein DM, Munoz R, Hebert D, McDonald RA (2007) Contributions of the Transplant Registry: The 2006 Annual Report of the North American Pediatric Renal Trials and Collaborative Studies (NAPRTCS). Pediatr Transplant 11:366–373

    Article  PubMed  Google Scholar 

  22. Meyers CM, Kirk AD (2005) Workshop on late renal allograft dysfunction. Am J Transplant 5:1600–1605

    Article  PubMed  Google Scholar 

  23. Kanzelmeyer NK, Ahlenstiel T, Drube J, Froede K, Kreuzer M, Broecker V, Pape L (2010) Protocol biopsy-driven interventions after pediatric renal transplantation. Pediatr Transplant 14:1012–1018

    Article  PubMed  CAS  Google Scholar 

  24. Terasaki PI, Ozawa M (2004) Predicting kidney graft failure by HLA antibodies: a prospective trial. Am J Transplant 4:438–443

    Article  PubMed  CAS  Google Scholar 

  25. Tonshoff B, Hocker B (2006) Treatment strategies in pediatric solid organ transplant recipients with calcineurin inhibitor-induced nephrotoxicity. Pediatr Transplant 10:721–729

    Article  PubMed  Google Scholar 

  26. Bharat W, Manlhiot C, McCrindle BW, Pollock-BarZiv S, Dipchand AI (2009) The profile of renal function over time in a cohort of pediatric heart transplant recipients. Pediatr Transplant 13:111–118

    Article  PubMed  Google Scholar 

  27. Nielsen D, Briem-Richter A, Sornsakrin M, Fischer L, Nashan B, Ganschow R (2011) The use of everolimus in pediatric liver transplant recipients: first experience in a single center. Pediatr Transplant 15:510–514

    Article  PubMed  CAS  Google Scholar 

  28. Brinkert F, Kemper MJ, Briem-Richter A, van Husen M, Treszl A, Ganschow R (2011) High prevalence of renal dysfunction in children after liver transplantation: non-invasive diagnosis using a cystatin C-based equation. Nephrol Dial Transplant 26:1407–1412

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lars Pape.

Additional information

Lars Pape and Thurid Ahlenstiel contributed equally to this work.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Pape, L., Ahlenstiel, T., Werner, C.D. et al. Development and validation of a new statistical model for prognosis of long-term graft function after pediatric kidney transplantation. Pediatr Nephrol 28, 499–505 (2013). https://doi.org/10.1007/s00467-012-2346-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00467-012-2346-y

Keywords

Navigation