Skip to main content
Log in

On the relation between phase-field crack approximation and gradient damage modelling

  • Original Paper
  • Published:
Computational Mechanics Aims and scope Submit manuscript

Abstract

The finite element implementation of a gradient enhanced microplane damage model is compared to a phase-field model for brittle fracture. Phase-field models and implicit gradient damage models share many similarities despite being conceived from very different standpoints. In both approaches, an additional differential equation and a length scale are introduced. However, while the phase-field method is formulated starting from the description of a crack in fracture mechanics, the gradient method starts from a continuum mechanics point of view. At first, the scope of application for both models is discussed to point out intersections. Then, the analysis of the employed mathematical methods and their rigorous comparison are presented. Finally, numerical examples are introduced to illustrate the findings of the comparison which are summarized in a conclusion at the end of the paper.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23

Similar content being viewed by others

References

  1. Amor H, Marigo JJ, Maurini C (2009) Regularized formulation of the variational brittle fracture with unilateral contact: numerical experiments. J Mech Phys Solids 57:1209–1229

    Article  MATH  Google Scholar 

  2. Balay S, Abhyankar S, Adams MF, Brown J, Brune P, Buschelman K, Dalcin L, Eijkhout V, Gropp WD, Kaushik D, Knepley MG, McInnes LC, Rupp K, Smith BF, Zampini S, Zhang H, Zhang H (2016) PETSc Web page. http://www.mcs.anl.gov/petsc

  3. Bažant P (1990) Non local microplane model for fracture, damage and size effect in structures. J Eng Mech 116:2485–2505

    Article  Google Scholar 

  4. Bažant ZP, Oh BH (1986) Efficient numerical integration on the surface of a sphere. Z Angew Math Mech 66:37–49

    Article  MathSciNet  MATH  Google Scholar 

  5. Borden MJ (2012) Isogeometric analysis of phase-field model for dynamic brittle and ductile fracture. Ph.D. thesis, The University of Texas, Austin

  6. Braides A (2002) Gamma-convergence for beginners. Oxford University Press, Oxford

    Book  MATH  Google Scholar 

  7. DIN EN 12390-3:2001 (2002) Prüfung von Festbeton Teil 3: Druckfestigkeit von Probekörpern. Beuth Verlag GmbH, Berlin

  8. de Borst R, Verhoosel CV (2016) Gradient damage versus phase-field approaches for fracture: similarities and differences. Comput Methods Appl Mech Eng

  9. Duda FP, Ciarbonetti A, Sánchez PJ, Huespe AE (2015) A phase-field/gradient damage model for brittle fracture in elastic–plastic solids. Int J Plast 65:269–296

    Article  Google Scholar 

  10. Geers M, de Borst R, Brekelmans W, Peerlings R (1998) Strain-based transient-gradient damage model for failure analyses. Comput Methods Appl Mech Eng 160:133–153

    Article  MATH  Google Scholar 

  11. Griffith AA (1921) The phenomena of rupture and flow in solids. Philos Trans R Soc Lond Ser A 221:163–198

    Article  Google Scholar 

  12. Hestenes MR, Stiefel E (1952) Methods of conjugate gradients for solving linear systems. J Res Natl Bur Stand 49:409–436

    Article  MathSciNet  MATH  Google Scholar 

  13. Hilber H, Hughes T, Taylor R (1977) Improved numerical dissipation for the time intergration algorithms in structural dynamics. Earthq Eng Struct Dyn 5:283–292

    Article  Google Scholar 

  14. Hofacker M (2013) A thermodynamically consistent phase field approach to fracture. Ph.D. thesis, Universität Stuttgart, Stuttgart

  15. Jonkers H (2011) Bacteria-based self-healing concrete. Heron 56(1/2):1–12

    Google Scholar 

  16. Kanellopoulos A, Qureshi T, Al-Tabbaa A (2015) Glass encapsulated minerals for self-healing in cement based composites. Constr Build Mater 98:780–791

    Article  Google Scholar 

  17. Kuhn C (2013) Numerical and analytical investigation of a phase field model for fracture. Ph.D. thesis, Technische Universität Kaiserslautern, Kaiserslautern

  18. Kuhn C, Müller R (2011) A new finite element technique for a phase field model of brittle fracture. J Theor Appl Mech 49:1115–1133

  19. Li XS (2005) An overview of SuperLU: algorithms, implementation, and user interface. ACM Trans Math Softw (TOMS) 31:302–325

    Article  MathSciNet  MATH  Google Scholar 

  20. Mazars J (1990) A description of micro-and macroscale damage of concrete structures. Eng Fract Mech 25:729–737

    Article  Google Scholar 

  21. Miehe C, Welschinger F, Hofacker M (2010) Thermodynamically consistent phase-field models of fracture: variational principles and multi-field fe implementations. Int J Numer Methods Eng 83:1273–1311

    Article  MathSciNet  MATH  Google Scholar 

  22. Ožbolt J, Sharma A, Reinhardt HW (2011) Dynamic fracture of concrete–compact tension specimen. Int J Solids Struct 48:1534–1543

    Article  MATH  Google Scholar 

  23. Peerlings RHJ, Geers MGD, de Borst R, Brekelmans WAM (2001) A critical comparison of nonlocal and gradient-enhanced softening continua. Int J Solids Struct 38:7723–7746

    Article  MATH  Google Scholar 

  24. Qinami A, Zreid I, Fleischhauer R, Kaliske M (2016) Modeling of impact on concrete plates by use of the microplane approach. Int J Non-Linear Mech 80:107–121

    Article  Google Scholar 

  25. Schlüter A (2013) FE-Implementierung eines dynamischen Phasenfeldmodells für Bruchvorgänge. Master’s thesis, Technische Universität Kaiserslautern, Kaiserslautern

  26. Schuler H (2004) Experimentelle und numerische untersuchungen zur schädigung von stoßbeanspruchtem beton. Ph.D. thesis, Universität der Bundeswehr München, München

  27. Steinke C, Özenç K, Chinaryan G, Kaliske M (2016) A comparative study of the r-adaptive material force approach and the phase-field method in dynamic fracture. Int J Fract 201:1–22

    Article  Google Scholar 

  28. Taylor RL Feap—a finite element analysis program. http://www.ce.berkeley.edu/projects/feap/

  29. van der Vorst HA (1992) Bi-cgstab: a fast and smoothly converging variant of Bi-CG for the solution of nonsymmetric linear systems. SIAM J Sci Stat Comput 13:631–644

    Article  MathSciNet  MATH  Google Scholar 

  30. Voyiadjis GZ, Mozaffari N (2013) Nonlocal damage model using the phase field method: theory and applications. Int J Solids Struct 50:3136–3151

    Article  Google Scholar 

  31. Wiederhorn SM, Townsend PR (1970) Crack healing in glass. J Am Ceram Soc 53:486–489

    Article  Google Scholar 

  32. Winkler B, Hofstetter G, Niederwanger G (2001) Experimental verification of a constitutive model for concrete cracking. Proc Inst Mech Eng J Mater Des Appl 215:75–86

    Google Scholar 

  33. Zreid I, Kaliske M (2014) Regularization of microplane damage models using an implicit gradient enhancement. Int J Solids Struct 51:3480–3489

    Article  Google Scholar 

  34. Zreid I, Kaliske M (2016) An implicit gradient formulation for microplane drucker–prager plasticity. Int J Plast 83:252–272

    Article  Google Scholar 

  35. Zreid I, Kaliske M (2016) Microplane modeling of cyclic behavior of concrete: a gradient plasticity-damage formulation. Proc Appl Math Mech 16:415–416

    Article  Google Scholar 

Download references

Acknowledgements

The authors would like to acknowledge the financial support of German Research Foundation under grant KA 1163/19 and of ANSYS, Inc, Canonsburg, USA. Furthermore, we thank the Center for Information Services and High Performance Computing (ZIH) at TU Dresden for generous allocations of computer time.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michael Kaliske.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Steinke, C., Zreid, I. & Kaliske, M. On the relation between phase-field crack approximation and gradient damage modelling. Comput Mech 59, 717–735 (2017). https://doi.org/10.1007/s00466-016-1369-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00466-016-1369-9

Keywords

Navigation