Skip to main content
Log in

The sequential addition and migration method to generate representative volume elements for the homogenization of short fiber reinforced plastics

  • Original Paper
  • Published:
Computational Mechanics Aims and scope Submit manuscript

Abstract

We present an algorithm for generating volume elements of short fiber reinforced plastic microstructures for prescribed fourth order fiber orientation tensor, fiber aspect ratio and solid volume fraction. The algorithm inserts fibers randomly into an existing microstructure, and removes the resulting overlap systematically based on a gradient descent method. In contrast to existing methods, large fiber aspect ratios (up to 150) and large volume fractions (60 vol% for isotropic orientation and aspect ratio of 33) can be reached. We study the effective linear elastic properties of the resulting microstructures, depending on fiber orientation, volume fraction as well as aspect ratio, and examine the size of a corresponding representative volume element.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Abdulle A, Bai Y (2014) Reduced order modelling numerical homogenization. Philos Trans R Soc 372:1–23

    Article  MathSciNet  MATH  Google Scholar 

  2. Advani SG, Tucker CL (1987) The use of tensors to describe and predict fiber orientation in short fiber composites. J Rheol 31(8):751–784

    Article  Google Scholar 

  3. Altendorf H, Jeulin D (2011) Random walk based stochastic modeling of 3D fiber systems. Phys Rev E 83(4):1–10

    Article  MATH  Google Scholar 

  4. Bakhvalov N, Panasenko G (1989) Homogenisation: averaging processes in periodic media: mathematical problems in the mechanics of composite materials. Mathematics and its applications. Soviet series. Kluwer Academic Publishers, Dordrecht

    MATH  Google Scholar 

  5. Birgin E, Martínez J, Ronconi DP (2005) Optimizing the packing of cylinders into a rectangular container: a nonlinear approach. Appl Math Program Models 160:19–33

    MATH  Google Scholar 

  6. Bohm H, Eckschlager A, Han W (2002) Multi-inclusion unit cell models for metal matrix composites with randomly oriented discontinuous reinforcements. Comput Mater Sci 25:42–53

    Article  Google Scholar 

  7. Browaeys JT, Chevrot S (2004) Decomposition of the elastic tensor and geophysical applications. Geophys J Int 159:667–678

    Article  Google Scholar 

  8. Cintra JS, Tucker CL (1995) Orthotropic closure approximations for flow-induced fiber orientation. J Rheol 39(6):1095–1122

    Article  Google Scholar 

  9. Coelho D, Thovert JF, Adler PM (1997) Geometrical and transport properties of random packings of spheres and aspherical particles. Phys Rev E 55(2):1959–1978

    Article  Google Scholar 

  10. Dray D, Gilormini P, Régnier G (2007) Comparison of several closure approximations for evaluating the thermoelastic properties of an injection molded short-fiber composite. Compos Sci Technol 67(7–8):1601–1610

    Article  Google Scholar 

  11. Duschlbauer D, Bohm H, Pettermann HE (2006) Computational simulation of composites reinforced by planar random fibers: homogenization and localization by unit cell and mean field approaches. J Compos Mater 40:2217–2234

    Article  Google Scholar 

  12. Düster A, Sehlhorst HG, Rank E (2012) Numerical homogenization of heterogeneous and cellular materials utilizing the finite cell method. Comput Mech 50(4):413–431

    Article  MathSciNet  MATH  Google Scholar 

  13. Feder J (1980) Random sequential adsorption. J Theor Biol 87(2):237–254

    Article  Google Scholar 

  14. Fliegener S, Luke M, Gumbsch P (2014) 3D microstructure modeling of long fiber reinforced thermoplastics. Compos Sci Technol 104:136–145

    Article  Google Scholar 

  15. Folgar F, Tucker C (1984) Orientation behavior of fibers in concentrated suspensions. J Reinf Plast Compos 3:98–119

    Article  Google Scholar 

  16. García AG (2015) Random packings via mechanical contraction. Master’s thesis, Universiteit Utrecht, Utrecht

  17. GeoDict. Math2Market GmbH http://www.geodict.de, Kaiserslautern, Germany. Accessed: 2016-08-01

  18. Ghosh S, Lee K, Moorthy S (1995) Multiple scale analysis of heterogeneous elastic structures using homogenization theory and voronoi cell finite element method. Int J Solids Struct 32(1):27–62

    Article  MathSciNet  MATH  Google Scholar 

  19. Ghossein E, Lévesque M (2013) Random generation of periodic hard ellipsoids based on molcular dynamics: A computationally-efficient algorithm. J Comput Phys 253:471–490

    Article  MathSciNet  MATH  Google Scholar 

  20. Guedes JM, Kikuchi N (1990) Preprocessing and postprocessing for materials based on the homogenization method with adaptive finite element methods. Comput Methods Appl Mech Eng 83:143–198

    Article  MathSciNet  MATH  Google Scholar 

  21. Gusev A (1997) Representative volume element size for elastic composites: numerical study. J Mech Phys Solids 45:1449–1459

    Article  MATH  Google Scholar 

  22. Gusev A, Heggli M, Lusti H, Hine PJ (2002) Orientation averaging for stiffness and thermal expansion of short fiber composites. Adv Eng Mater 4:931–933

    Article  Google Scholar 

  23. Gusev A, Hine PJ, Ward IM (2000) Fiber packing and elastic properties of a transversely random unidirectional glass/epox composite. Compos Sci Technol 60:535–541

  24. Hill R (1963) Elastic properties of reinforced solids: some theoretical principles. J Mech Phys Solids 11:357–372

    Article  MATH  Google Scholar 

  25. Kanatani KI (1984) Distribution of directional data and fabric tensors. Int J Eng Sci 22:149–164

    Article  MathSciNet  MATH  Google Scholar 

  26. Kari S, Berger H, Gabbert U (2007) Numerical evaluation of effective material properties of randomly distributed short cylindrical fibre composites. Comput Mater Sci 39:198–204

    Article  Google Scholar 

  27. Leuschner M, Fritzen F, van Dommelen J, Hoefnagels J (2015) Potential-based constitutive models for cohesive interfaces: Theory, implementation and examples. Compos Part B Eng 68:38–50

    Article  Google Scholar 

  28. Mattson W, Rice BM (1999) Near-neighbor calculations using a modified cell-linked list method. Comput Phys Commun 119:135–148

    Article  Google Scholar 

  29. Michel JC, Suquet P (2016) A model-reduction approach in micromechanics of materials preserving the variational structure of constitutive relations. J Mech Phys Solids 90:254–285

    Article  MathSciNet  Google Scholar 

  30. Müller V, Böhlke T (2016) Prediction of effective elastic properties of fiber reinforced composites. Compos Sci Technol 130:36–45

    Article  Google Scholar 

  31. Müller V, Kabel M, Andrä H, Böhlke T (2015) Homogenization of linear elastic properties of short-fiber reinforced composites—a comparison of mean field and voxel-based methods. Int J Solids Struct 67–68:56–70

    Article  Google Scholar 

  32. Montgomery-Smith S, He W, Jack DA, Smith DE (2011) Exact tensor closures for the three-dimensional Jeffery’s equation. J Fluid Mech 680:321–335

    Article  MathSciNet  MATH  Google Scholar 

  33. Montgomery-Smith S, Jack D, Smith DE (2011) The Fast Exact Closure for Jefferys equation with diffusion. J Nonnewton Fluid Mech 166(7–8):343–353

    Article  MATH  Google Scholar 

  34. Mosby M, Matouš K (2016) Computational homogenization at extreme scales. Extreme Mech Lett 6:68–74

    Article  Google Scholar 

  35. Moulinec H, Suquet P (1998) A numerical method for computing the overall response of nonlinear composites with complex microstructure. Comput Methods Appl Mech Eng 157(1–2):69–94

    Article  MathSciNet  MATH  Google Scholar 

  36. Nardin M, Papiere E, Schultz J (1985) Contribution l’etude des empilements au hasard de fibres et/ou de partiules spheriques. Powder Technol 44:131–140

    Article  Google Scholar 

  37. Pan Y, Iorga L, Pelegri AA (2006) Numerical generation of a random chopped fiber composite RVE and its elastic properties. Compos Sci Technol 68:56–66

    Google Scholar 

  38. Parsheh M, Brown ML, Aidun CK (2006) Investigation of closure approximations for fiber orientation distribution in contracting turbulent flow. J Nonnewton Fluid Mech 136(1):38–49

    Article  MATH  Google Scholar 

  39. Philipse AP (1996) The random contact equation and its implications for (colloidal) rods in packings, suspensions and anisotropic powders. Langmuir 12:1127–1133

    Article  Google Scholar 

  40. Pournin I, Weber M, Tsukahara M, Ferrez JA, Ramaioli M, Liebling T (2005) Three-dimensional distinct element simulation of spherocylinder crystallization. Granular Matter 7:119–126

    Article  MATH  Google Scholar 

  41. Salnikov V, Choï D, Karamian-Surville P (2015) On efficient and reliable stochastic generation of RVEs for analysis of composites within the framework of homogenization. Comput Mech 55:127–144

    Article  MathSciNet  MATH  Google Scholar 

  42. Schneider M, Merkert D, Kabel M (2016) FFT-based homogenization for microstructures discretized by linear hexahedral elements. Int J Numer Methods Eng 1–29 (2016)

  43. Schneider M, Ospald F, Kabel M (2016) Computational homogenization of elasticity on a staggered grid. Int J Numer Methods Eng 105(9):693–720

    Article  MathSciNet  Google Scholar 

  44. Schwen LO, Wolfram U (2014) Validation of composite finite elements efficiently simulating elasticity of trabecular bones. Comput Methods Biomech Biomed Eng 17:652–660

    Article  Google Scholar 

  45. Sun CT, Vaidya RS (1996) Prediction of composite properties from a representative volume element. Compos Sci Technol 56:171–179

    Article  Google Scholar 

  46. Tian W, Qi L, Zhou J, Liang J, Ma Y (2015) Representative volume element for composites reinforced by spatially randomly distributed discontinuous fibers and its applications. Compos Struct 131:366–373

    Article  Google Scholar 

  47. Tyler DE (1987) Statistical Analysis for the Angular Central Gaussian Distribution on the Sphere. Biometrika 74(3):579–589

    Article  MathSciNet  MATH  Google Scholar 

  48. Vega C, Lago S (1994) A fast algorithm to evaluate the shortest distance between rods. Comput Chem 18:55–59

    Article  Google Scholar 

  49. Verlet L (1967) Computer ’experiments’ on classical fluids. I. Thermodynamical properties of Lennard-Jonear molecules. Phys Rev 159:98–103

    Article  Google Scholar 

  50. Widom B (1966) Random sequential addition of hard spheres to a volume. J Chem Phys 44(10):3888–3894

    Article  Google Scholar 

  51. Williams S, Philipse A (2003) Random packings of spheres and spherocylinders simulated by mechanical contraction. Phys Rev E 67:1–9

    Article  Google Scholar 

Download references

Acknowledgments

The author thanks the anonymous referees for suggestions leading to a huge improvement of the manuscript, Jonathan Köbler for help with the OpenMP parallelization of the code and Felix Ospald for a careful reading of the final version.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Matti Schneider.

Appendix A

Appendix A

The Appendix contains details how to compute the differentials in Eqs. (5) and (8).

1.1 Differentiating f in (5)

We use the notation of Sect. 2.2. For each pair \(i\ne j\) the vector \(k_{ij}\) is determined from the minimization problem

$$\begin{aligned} \frac{1}{2} \Vert k_{ij}\Vert ^2\longrightarrow \min _{s,t} \end{aligned}$$

with the constraints \(s,t\in [-1,1]\) and

$$\begin{aligned} k_{ij}=x_i - x_j + s\frac{L}{2} p_i - t\frac{L}{2} p_j. \end{aligned}$$

Introducing the dual variables \(\alpha ,\beta ,\gamma \) and \(\delta \) the corresponding KKT system reads

$$\begin{aligned} 0= & {} \left\langle k_{ij}, \frac{L}{2} p_i \right\rangle -\alpha +\beta ,\nonumber \\ 0= & {} \left\langle k_{ij}, -\frac{L}{2} p_j \right\rangle -\gamma +\delta ,\nonumber \\ 0\le & {} 1+s,\quad (1+s)\alpha =0, \quad \alpha \ge 0,\nonumber \\ 0\le & {} 1-s,\quad (1-s)\beta =0, \quad \beta \ge 0,\nonumber \\ 0\le & {} 1+t,\quad (1+t)\gamma =0, \quad \gamma \ge 0,\nonumber \\ 0\le & {} 1-t,\quad (1-t)\delta =0, \quad \delta \ge 0, \end{aligned}$$
(12)

We examine how \(\tfrac{1}{2} \Vert k_{ij}\Vert ^2\) changes with \(x_i\), i.e.

$$\begin{aligned} \frac{\partial \left( \tfrac{1}{2}\Vert k_{ij}\Vert ^2\right) }{\partial x_i} [\xi ]= & {} \left\langle k_{ij}, \xi + \frac{\partial s}{\partial x_i}[\xi ]\frac{L}{2}p_i -\frac{\partial t}{\partial x_i}[\xi ]\frac{L}{2}p_j\right\rangle \nonumber \\= & {} \langle k_{ij}, \xi \rangle + \frac{\partial s}{\partial x_i}[\xi ] \left\langle k_{ij},\frac{L}{2}p_i\right\rangle \nonumber \\&+\,\frac{\partial t}{\partial x_i}[\xi ]\left\langle k_{ij},-\frac{L}{2}p_j\right\rangle \nonumber \\= & {} \langle k_{ij}, \xi \rangle + \frac{\partial s}{\partial x_i}[\xi ] (\alpha -\beta ) \nonumber \\&+\,\frac{\partial t}{\partial x_i}[\xi ](\gamma -\delta ) \end{aligned}$$
(13)

where we have used the KKT system (12) in the last line. (Notice that we use \(\langle u,v\rangle \) and \(u\cdot v\) interchangeably to denote the Euclidean scalar product.)

First we analyze the term \(\frac{\partial s}{\partial x_i}[\xi ] \alpha \). We will show that it is identically zero. Suppose that \(\alpha >0\). Otherwise there would be nothing to show. Consider the complementary slackness \((1+s)\alpha =0\). As \(\alpha >0\), we have \(s=-1\). Differentiating the complementary slackness yields

$$\begin{aligned} 0=\frac{\partial s}{\partial x_i}[\xi ] \alpha + (1+s)\frac{\partial \alpha }{\partial x_i}[\xi ] =\frac{\partial s}{\partial x_i}[\xi ] \alpha , \end{aligned}$$

where we have used that \(s=-1\). Thus, the term \(\frac{\partial s}{\partial x_i}[\xi ] \alpha \) vanishes. Argumenting analogously we see that the other three terms \(\frac{\partial s}{\partial x_i}[\xi ]\beta \), \(\frac{\partial t}{\partial x_i}[\xi ]\gamma \) and \(\frac{\partial t}{\partial x_i}[\xi ]\delta \) in (13) vanish. Thus, we conclude

$$\begin{aligned} \frac{\partial \left( \tfrac{1}{2}\Vert k_{ij}\Vert ^2\right) }{\partial x_i} [\xi ]=\langle k_{ij}, \xi \rangle . \end{aligned}$$

Using this previous result, the differentiating the objective function

$$\begin{aligned} f(x_1,\ldots ,x_N,p_1,\ldots ,p_N) = \frac{1}{2} \sum _{i<j} \delta _{ij}^2 \end{aligned}$$

with \(\delta _{ij}=\max \{0,D-\Vert k_{ij}\Vert \}\) in (5) proceeds as follows:

$$\begin{aligned} \frac{\partial f}{\partial x_i}[\xi ]= & {} \frac{1}{2} \sum _{i<j} \frac{\partial (\delta _{ij}^2)}{\partial x_i}[\xi ]\nonumber \\= & {} -\sum _{i<j} \delta _{ij}\frac{\partial /\partial x_i (\tfrac{1}{2} \Vert k_{ij}\Vert ^2)[\xi ] }{\Vert k_{ij}\Vert }\nonumber \\= & {} -\sum _{i<j} \delta _{ij}\left\langle \frac{k_{ij}}{\Vert k_{ij}\Vert }, \xi \right\rangle , \end{aligned}$$

leading to the first line in (6).

Differentiating w.r.t. \(p_i\) proceeds similarly. Notice that in contrast to (13) the product sL / 2 appears

$$\begin{aligned} \frac{\partial \left( \tfrac{1}{2}\Vert k_{ij}\Vert ^2\right) }{\partial p_i} [\eta ]= & {} \langle k_{ij}, sL/2\xi \rangle +\, \frac{\partial s}{\partial p_i}[\eta ] (\alpha -\beta ) \nonumber \\&- \frac{\partial t}{\partial p_i}[\eta ] (\gamma - \delta ). \end{aligned}$$

However, this is the only difference. Denoting the s-parameter for the i-j-collision by \(s_{ij}\) similar arguments as for the \(x_i\)-derivative permit us to conclude

$$\begin{aligned} \frac{\partial f}{\partial p_i}[\eta ] = -\sum _{i<j} \delta _{ij}\left\langle \frac{\tfrac{L}{2}s_{ij}k_{ij}}{\Vert k_{ij}\Vert }, \eta \right\rangle , \end{aligned}$$

representing the second line in (6).

1.2 Computing the gradient of the orientation term

We wish to differentiate the function

$$\begin{aligned} h(p_1,\ldots p_N)=\frac{1}{8} \Vert \mathbb {A}-\mathbb {A}_N\Vert ^2 \end{aligned}$$

with \(\mathbb {A}_N=\sum _{i=1}^N p_i\otimes p_i\otimes p_i\otimes p_i\) at \(p_i\) in direction \(\eta \) orthogonal to \(p_i\). Then,

$$\begin{aligned} \frac{\partial h}{\partial p_i}[\eta ]= & {} -\frac{1}{4} (\mathbb {A}-\mathbb {A}_N)\!\cdot \!\cdot \!\cdot \!\cdot (\eta \otimes p_i\otimes p_i \otimes p_i\nonumber \\&+\,p_i \otimes \eta \otimes p_i \otimes p_i + p_i\otimes p_i \otimes \eta \otimes p_i\nonumber \\&+\, p_i \otimes p_i\otimes p_i \otimes \eta ). \end{aligned}$$

Taking into account the full symmetry of \(\mathbb {A}\) and \(\mathbb {A}_N\) w.r.t. the permutation of indices the latter expression can be simplified to

$$\begin{aligned} \frac{\partial h}{\partial p_i}[\eta ]= & {} -(\mathbb {A}-\mathbb {A}_N)\!\cdot \!\cdot \!\cdot \!\cdot \eta \otimes p_i\otimes p_i \otimes p_i\nonumber \\= & {} -\left[ (\mathbb {A}-\mathbb {A}_N)\!\cdot \!\cdot \!\cdot p_i\otimes p_i \otimes p_i\right] \cdot \eta , \end{aligned}$$

proving (9).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Schneider, M. The sequential addition and migration method to generate representative volume elements for the homogenization of short fiber reinforced plastics. Comput Mech 59, 247–263 (2017). https://doi.org/10.1007/s00466-016-1350-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00466-016-1350-7

Keywords

Navigation