Skip to main content

Advertisement

Log in

Non-vascular experimental and clinical applications of advanced bipolar radiofrequency thermofusion technology in the thorax and abdomen: a systematic review

  • Review
  • Published:
Surgical Endoscopy Aims and scope Submit manuscript

Abstract

Background

Advanced bipolar radiofrequency (RF) energy-based devices are increasingly used for non-vascular tissue sealing, transection and anastomosis. Although the potential to further develop this technology is clear, the limitations of commercially available devices are poorly understood. This systematic review examines the current utilisation of advanced bipolar RF fusion technology for non-vascular applications in thoracic and abdominal tissues and organs.

Methods

Medline, Embase, Web of Science and Cochrane library databases were searched. Studies examining the non-vascular application of advanced bipolar RF technology in the abdomen and thorax were assessed. Measurement of seal sufficiency and the extent of tissue injury induced by bipolar RF energy application were the main outcomes of interest.

Results

Forty-six animal and human studies conducted in and ex vivo across a range of tissue types, met the inclusion criteria. The diversity of study protocols together with the heterogeneity of their outcomes prevented pooled analysis. However, the experimental animal studies assessed suggest that bipolar RF fusion devices are capable of effectively sealing most tissue types with the notable exception of large caliber bronchi (>4 mm) and bile ducts, where the rate of seal failure was unacceptably high. Human studies were additionally found to predominantly use bipolar RF technology as a means of parenchymal and ductal occlusion. A similar trend was seen amongst animal studies with only a handful of papers examining bipolar RF energy use for (bowel) anastomosis.

Conclusion

Bipolar RF fusion devices are capable of safely sealing a variety of thoracic and anterior abdominal tissues with an injury and leakage profile comparable to established technologies. Although thermal monitoring is increasingly sophisticated and multimodal, consistent real time tracking of a multitude of parameters is necessary in order to expand RF fusion technology utilisation to complete an array of tasks such as vessel ligation, ductal obliteration and anastomosis in the open and laparoscopic environments.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Kennedy JS, Stranahan PL, Taylor KD, Chandler JG (1998) High-burst-strength, feedback-controlled bipolar vessel sealing. Surg Endosc Ultras 12:876–878

    Article  CAS  Google Scholar 

  2. Kennedy JS, Buysse SP, Lawes KR, Ryan TP (1999) Recent innovations in bipolar electrosurgery. Minim Invasive Ther 8:95–99

    Article  Google Scholar 

  3. Kennedy J, Buysse S, Chandler J, Eggleston J, Taylor K, Thomsen S (1998) Controlled radio frequency vessel sealing system for surgical applications. In: Ryan TP, Katzir A (eds) Proceedings of Surgical Applications of Energy, Spie-Int Soc Optical Engineering, Bellingham, pp 125–129

  4. Harold KL, Pollinger H, Matthews BD, Kercher KW, Sing RF, Heniford BT (2003) Comparison of ultrasonic energy, bipolar thermal energy, and vascular clips for the hemostasis of small-, medium-, and large-sized arteries. Surg Endosc 17:1228–1230

    Article  CAS  PubMed  Google Scholar 

  5. Romano F, Garancini M, Caprotti R, Bovo G, Conti M, Perego E, Uggeri F (2007) Hepatic resection using a bipolar vessel sealing device: technical and histological analysis. HPB 9:339–344

    Article  PubMed Central  PubMed  Google Scholar 

  6. Romano F, Caprotti R, Franciosi C, De Fina S, Colombo G, Uggeri F (2002) Laparoscopic splenectomy using Ligasure. Preliminary experience. Surg Endosc 16:1608–1611

    Article  CAS  PubMed  Google Scholar 

  7. Takada M, Ichihara T, Kuroda Y (2005) Comparative study of electrothermal bipolar vessel sealer and ultrasonic coagulating shears in laparoscopic colectomy. Surg Endosc Other Interv Tech 19:226–228

    Article  CAS  Google Scholar 

  8. Arya S, Hadjievangelou N, Lei S, Kudo H, Goldin RD, Darzi AW, Elson DS, Hanna GB (2013) Radiofrequency-induced small bowel thermofusion: an ex vivo study of intestinal seal adequacy using mechanical and imaging modalities. Surg Endosc 27:3485–3496

    Article  PubMed  Google Scholar 

  9. Shields CA, Schechter DA, Tetzlaff P, Baily AL, Dycus S, Cosgriff N (2004) Method for creating ideal tissue fusion in soft-tissue structures using radio frequency (RF) energy. Surg Technol Int 13:49–55

    PubMed  Google Scholar 

  10. Smulders JF, de Hingh IH, Stavast J, Jackimowicz JJ (2007) Exploring new technologies to facilitate laparoscopic surgery: creating intestinal anastomoses without sutures or staples, using a radio-frequency-energy-driven bipolar fusion device. Surg Endosc 21:2105–2109

    Article  CAS  PubMed  Google Scholar 

  11. Schulze S, Damgaard B, Jorgensen LN, Larsen SS, Kristiansen VB (2010) Cystic duct closure by sealing with bipolar electrocoagulation. J Soc Laparoendosc Surg 14:20–22

    Article  CAS  Google Scholar 

  12. Winter H, Holmer C, Buhr HJ, Lindner G, Lauster R, Kraft M, Ritz JP (2010) Pilot study of bipolar radiofrequency-induced anastomotic thermofusion-exploration of therapy parameters ex vivo. Int J Colorectal Dis 25:129–133

    Article  PubMed  Google Scholar 

  13. Holmer C, Winter H, Kroger M, Nagel A, Jaenicke A, Lauster R, Kraft M, Buhr HJ, Ritz JP (2011) Bipolar radiofrequency-induced thermofusion of intestinal anastomoses–feasibility of a new anastomosis technique in porcine and rat colon. Langenbeck’s Arch Surg 396:529–533

    Article  Google Scholar 

  14. Santini M, Vicidomini G, Baldi A, Gallo G, Laperuta P, Busiello L, Di Marino MP, Pastore V (2006) Use of an electrothermal bipolar tissue sealing system in lung surgery. Eur J Cardiothorac Surg 29:226–230

    Article  PubMed  Google Scholar 

  15. Shigemura N, Akashi A, Nakagiri T, Ohta M, Matsuda H (2004) A new tissue-sealing technique using the Ligasure system for nonanatomical pulmonary resection: preliminary results of sutureless and stapleless thoracoscopic surgery. Ann Thorac Surg 77:1415–1418

    Article  PubMed  Google Scholar 

  16. Janssen PF, Brolmann HA, Huirne JA (2012) Effectiveness of electrothermal bipolar vessel-sealing devices versus other electrothermal and ultrasonic devices for abdominal surgical hemostasis: a systematic review. Surg Endosc 26(10):2892–2901

  17. Yao HS, Wang Q, Wang WJ, Ruan CP (2009) Prospective clinical trials of thyroidectomy with LigaSure vs conventional vessel ligation: a systematic review and meta-analysis. Arch Surg 144:1167–1174

    Article  PubMed  Google Scholar 

  18. Macario A, Dexter F, Sypal J, Cosgriff N, Heniford BT (2008) Operative time and other outcomes of the electrothermal bipolar vessel sealing system (LigaSure) versus other methods for surgical hemostasis: a meta-analysis. Surg Innov 15:284–291

    Article  PubMed  Google Scholar 

  19. Matthews BD, Pratt BL, Backus CL, Kercher KW, Mostafa G, Lentzner A, Lipford EH, Sing RF, Heniford BT (2001) Effectiveness of the ultrasonic coagulating shears, LigaSure vessel sealer, and surgical clip application in biliary surgery: a comparative analysis. Am Surg 67:901–906

    CAS  PubMed  Google Scholar 

  20. Lim CB, Goldin RD, Elson DS, Darzi A, Hanna GB (2010) In vivo thermography during small bowel fusion using radiofrequency energy. Surg Endosc 24:2465–2474

    Article  PubMed  Google Scholar 

  21. Campbell PA, Cresswell AB, Frank TG, Cuschieri A (2003) Real-time thermography during energized vessel sealing and dissection. Surg Endosc 17:1640–1645

    Article  CAS  PubMed  Google Scholar 

  22. Kim FJ, Chammas MF Jr, Gewehr E, Morihisa M, Caldas F, Hayacibara E, Baptistussi M, Meyer F, Martins AC (2008) Temperature safety profile of laparoscopic devices: harmonic ACE (ACE), Ligasure V(LV), and plasma trisector (PT). Surg Endosc Other Interv Tech 22:1464–1469

    Article  CAS  Google Scholar 

  23. Phillips CK, Hruby GW, Durak E, Lehman DS, Humphrey PA, Mansukhani MM, Landman J (2008) Tissue response to surgical energy devices. Urology 71:744–748

    Article  PubMed  Google Scholar 

  24. Dodde R, Shih A, Advincula AP (2009) A novel technique for demonstrating the real-time subsurface tissue thermal profile of two energized surgical instruments. J Minim Invasive Gynecol 16:599–603

    Article  PubMed  Google Scholar 

  25. Song C, Tang B, Campbell PA, Cuschieri A (2009) Thermal spread and heat absorbance differences between open and laparoscopic surgeries during energized dissections by electrosurgical instruments. Surg Endosc 23:2480–2487

    Article  CAS  PubMed  Google Scholar 

  26. Govekar HR, Robinson TN, Stiegmann GV, McGreevy FT (2011) Residual heat of laparoscopic energy devices: how long must the surgeon wait to touch additional tissue? Surg Endosc 25:3499–3502

    Article  PubMed  Google Scholar 

  27. Novitsky YW, Rosen MJ, Harrell AG, Sing RF, Kercher KW, Heniford BT (2005) Evaluation of the efficacy of the electrosurgical bipolar vessel sealer (LigaSure) devices in sealing lymphatic vessels. Surg Innov 12:155–160

    Article  PubMed  Google Scholar 

  28. Box GN, Lee HJ, Abraham JB, Deane LA, Elchico ER, Abdelshehid CA, Alipanah R, Taylor MB, Andrade L, Edwards RA, Borin JF, McDougall EM, Clayman RV (2009) Comparative study of in vivo lymphatic sealing capability of the porcine thoracic duct using laparoscopic dissection devices. J Urol 181:387–391

    Article  PubMed  Google Scholar 

  29. Tirabassi MV, Banever GT, Tashjian DB, Moriarty KP (2004) Quantitation of lung sealing in the survival swine model. J Pediatr Surg 39:387–390

    Article  PubMed  Google Scholar 

  30. Sakuragi T, Okazaki Y, Mitsuoka M, Yamasaki F, Masuda M, Mori D, Satoh T, Itoh T (2008) The utility of a reusable bipolar sealing instrument, BiClamp((R)), for pulmonary resection. Eur J Cardiothorac Surg 34:505–509

    Article  PubMed  Google Scholar 

  31. Cakan A, Yoldas B, Samancilar O, Ertugrul V, Turhan K, Cagirici U, Askar F, Veral A (2009) Ligasure vessel sealing system versus harmonic scalpel for sutureless nonanatomical pulmonary resections in a rabbit model. Which one is safer? Eur Surg Res 43:24–28

    Article  CAS  PubMed  Google Scholar 

  32. Relave F, David F, Leclere M, Alexander K, Helie P, Meulyzer M, Lavoie JP, Marcoux M (2010) Thoracoscopic lung biopsies in heaves-affected horses using a bipolar tissue sealing system. Vet Surg 39:839–846

    Article  PubMed  Google Scholar 

  33. Mayhew PD, Culp WT, Pascoe PJ, Arzi NV (2012) Use of the Ligasure vessel-sealing device for thoracoscopic peripheral lung biopsy in healthy dogs. Vet Surg 41:523–528

    Article  PubMed  Google Scholar 

  34. Kovacs O, Szanto Z, Krasznai G, Herr G (2009) Comparing bipolar electrothermal device and endostapler in endoscopic lung wedge resection. Interact Cardiovasc Thorac Surg 9:11–14

    Article  PubMed  Google Scholar 

  35. Schulze S, Krisitiansen VB, Fischer Hansen B, Rosenberg J (2002) Sealing of cystic duct with bipolar electrocoagulation. Surg Endosc 16:342–344

    Article  CAS  PubMed  Google Scholar 

  36. Shamiyeh A, Vattay P, Tulipan L, Schrenk P, Bogner S, Danis J, Wayand W (2004) Closure of the cystic duct during laparoscopic cholecystectomy with a new feedback-controlled bipolar sealing system in case of biliary obstruction—an experimental study in pigs. Hepatogastroenterology 51:931–933

    CAS  PubMed  Google Scholar 

  37. Shamiyeh A, Schrenk P, Tulipan L, Vattay P, Bogner S, Wayand W (2002) A new bipolar feedback-controlled sealing system for closure of the cystic duct and artery. Surg Endosc 16:812–813

    Article  CAS  PubMed  Google Scholar 

  38. Nii A, Shimada M, Ikegami T, Mori H, Imura S, Arakawa Y, Morine Y, Kanemura H (2008) Efficacy of vessel sealing system for major Glisson bundles and major bile ducts. J Hepatobiliary-pancreatic Surg 15:522–527

    Article  Google Scholar 

  39. Hope WW, Padma S, Newcomb WL, Schmelzer TM, Heath JJ, Lincourt AE, Heniford BT, Norton HJ, Martinie JB, Iannitti DA (2010) An evaluation of electrosurgical vessel-sealing devices in biliary tract surgery in a porcine model. HPB 12:703–708

    Article  PubMed Central  PubMed  Google Scholar 

  40. Fassiadis N, Hicks JA, Somers SS (2002) A novel method of intra-hepatic bile-duct closure using the LigaSure device. Minim Invasiv Ther 11:17–18

    Article  Google Scholar 

  41. Constant DL, Slakey DP, Campeau RJ, Dunne JB (2005) Laparoscopic nonanatomic hepatic resection employing the LigaSure device. J Soc Laparoendosc Surg 9:35–38

    Google Scholar 

  42. Sahin DA, Kusaslan R, Sahin O, Akbulut G, Bas O, Dilek ON (2007) Histopathological effects of bipolar vessel sealing devices on liver parenchyma and comparison with suture method: an experimental study. Eur Surg Res 39:111–117

    Article  CAS  PubMed  Google Scholar 

  43. Cheang T, Hanna SS, Wright FC, Law CH (2006) Use of a collagen-sealing device in hepatic resection: a comparative analysis to standard resection technique. J Int Hepato Pancreato Biliary Assoc 8:194–199

    Article  CAS  Google Scholar 

  44. Corvera CU, Dada SA, Kirkland JG, Garrett RD, Way LW, Stewart L (2006) Bipolar pulse coagulation for resection of the cirrhotic liver. J Surg Res 136:182–186

    Article  PubMed  Google Scholar 

  45. Evrard S, Becouarn Y, Brunet R, Fonck M, Larrue C, Mathoulin-Pelissier S (2007) Could bipolar vessel sealers prevent bile leaks after hepatectomy? Langenbeck’s Arch Surg 392:41–44

    Article  Google Scholar 

  46. Saiura A, Yamamoto J, Koga R, Sakamoto Y, Kokudo N, Seki M, Yamaguchi T, Yamaguchi T, Muto T, Makuuchi M (2006) Usefulness of LigaSure for liver resection: analysis by randomized clinical trial. Am J Surg 192:41–45

    Article  PubMed  Google Scholar 

  47. Ikeda M, Hasegawa K, Sano K, Imamura H, Beck Y, Sugawara Y, Kokudo N, Makuuchi M (2009) The vessel sealing system (LigaSure) in hepatic resection: a randomized controlled trial. Ann Surg 250:199–203

    Article  PubMed  Google Scholar 

  48. Garancini M, Gianotti L, Mattavelli I, Romano F, Degrate L, Caprotti R, Nespoli A, Uggeri F (2011) Bipolar vessel sealing system vs. clamp crushing technique for liver parenchyma transection. Hepatogastroenterology 58:127–132

    PubMed  Google Scholar 

  49. Doklestic K, Karamarkovic A, Stefanovic B, Milic N, Gregoric P, Djukic V, Bajec D (2012) The efficacy of three transection techniques of liver resection: a randomized clinical trial. Hepatogastroenterology 59:1501–1506

    PubMed  Google Scholar 

  50. Mbah NA, Brown RE, Bower MR, Scoggins CR, McMasters KM, Martin RCG (2012) Differences between bipolar compression and ultrasonic devices for parenchymal transection during laparoscopic liver resection. HPB 14:126–131

    Article  PubMed Central  PubMed  Google Scholar 

  51. Campagnacci R, De Sanctis A, Baldarelli M, Di Emiddio M, Organetti L, Nisi M, Lezoche G, Guerrieri M (2007) Hepatic resections by means of electrothermal bipolar vessel device (EBVS) LigaSure V: early experience. Surg Endosc 21:2280–2284

    Article  CAS  PubMed  Google Scholar 

  52. Hartwig W, Duckheim M, Strobel O, Dovzhanskiy D, Bergmann F, Hackert T, Buchler MW, Werner J (2010) LigaSure for pancreatic sealing during distal pancreatectomy. World J Surg 34:1066–1070

    Article  PubMed  Google Scholar 

  53. Wouters EG, Buishand FO, Kik M, Kirpensteijn J (2011) Use of a bipolar vessel-sealing device in resection of canine insulinoma. J Small Anim Pract 52:139–145

    Article  CAS  PubMed  Google Scholar 

  54. Salameh JR, Schwartz JH, Hildebrandt DA (2006) Can LigaSure seal and divide the small bowel? Am J Surg 191:791–793

    Article  PubMed  Google Scholar 

  55. Santini M, Fiorelli A, Messina G, Laperuta P, Mazzella A, Accardo M (2013) Use of the LigaSure device and the Stapler for closure of the small bowel: a comparative ex vivo study. Surg Today 43:787–793

    Article  PubMed  Google Scholar 

  56. Elemen L, Yazir Y, Akay A, Boyacioglu Z, Ceyran B, Ceylan S (2011) Comparison of bipolar electrosurgical devices with ligatures and endoclips in the rat appendicitis model. J Pediatr Surg 46:1923–1929

    Article  PubMed  Google Scholar 

  57. de Souza LC, Ortega MR, Achar E, Netto DS, Ribeiro MAF (2012) Application of high frequency bipolar electrocoagulation LigaSure (TM) in appendix vermiformis of rabbits with or without acute inflammatory process. Acta Cirurgica Brasileira 27:322–329

    Article  PubMed  Google Scholar 

  58. Su L, Cloyd KL, Arya S, Hedegaard MA, Steele JA, Elson DS, Stevens MM, Hanna GB (2013) Raman spectroscopic evidence of tissue restructuring in heat-induced tissue fusion. J Biophoton 9(1):e84547

  59. Su L, Fonseca MB, Arya S, Kudo H, Goldin R, Hanna GB, Elson DS (2014) Laser-induced tissue fluorescence in radiofrequency tissue-fusion characterization. J Biomed Opt 19:15007

    Article  PubMed  Google Scholar 

  60. Floume T, Syms RRA, Darzi AW, Hanna GB (2008) Real-time optical monitoring of radio-frequency tissue fusion by continuous wave transmission spectroscopy. J Biomed Opt 13:064006

Download references

Acknowledgments

This report was part of independent research funded by the Department of Health under the Health Technology Devices programme (HTD240). The views expressed in this publication were those of the authors and not necessarily those of the NHS or the Department of Health.

Disclosures

Mr. Arya and Professor Hanna receive funding from the UK Department of Health and Covidien™ under the Health Technology Devices programme (HTD240). Mr. MacKenzie has no conflicts of interest or financial ties to disclose.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shobhit Arya.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Arya, S., Mackenzie, H. & Hanna, G.B. Non-vascular experimental and clinical applications of advanced bipolar radiofrequency thermofusion technology in the thorax and abdomen: a systematic review. Surg Endosc 29, 1659–1678 (2015). https://doi.org/10.1007/s00464-014-3893-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00464-014-3893-z

Keywords

Navigation