Skip to main content

Advertisement

Log in

Implementation of a novel efficacy score to compare sealing and cutting devices in a porcine model

  • Published:
Surgical Endoscopy Aims and scope Submit manuscript

Abstract

Background

In general surgery, minimally invasive laparoscopic procedures have been steadily increasing over the last decade. The application of advanced bipolar and ultrasonic energy devices for sealing and cutting of blood vessels plays a vital role in routine clinical procedures. The advantages of energy-based instruments are enhanced sealing capability combined with both fast sealing time and minimal thermal injury. The purpose of this study was to compare the safety and efficacy profiles of nine laparoscopic sealing and cutting devices in a porcine model, with a new scoring system.

Methods

Comparative studies in a porcine model were performed to assess vessel sealing, burst pressure, thermal spread, maximum heat, sealing/cooling time, and compression strength over the full jaw. Nine different devices from five manufacturers were tested in this study. The sealing and cutting devices (SCD) score has been developed to enable standardized comparisons of various devices. For this purpose, the most important parameters were identified through a consensus approach.

Results

All sealed vessels with different devices could withstand a median pressure of more than 300 mmHg (range 112–2046 mmHg). The time for the sealing procedure was 7.705 s (range 5.305–18.38 s) for the ultrasonic and 7.860 s (range 5.08–10.17 s) for the bipolar devices. The ultrasonic instruments reached a median temperature of 218.1 °C (range 81.3–349.75 °C) and the bipolar devices a temperature of 125.5 °C (range 94.1–133.35 °C). The tissue reached a median temperature of 61.9 (range 47.1–80.6 °C) after ultrasonic sealing and 76.7 °C (range 63.1–94.2 °C) after bipolar sealing. The median SCD score was 10.47 (range 7.16–13.72).

Conclusion

All the instruments used seemed safe for use on the patient. The SCD score allows an indirect comparability of the instruments.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Philosophe R (2003) Avoiding complications of laparoscopic surgery. Fertil Steril 80(Suppl 4):30–39 quiz 54-36

    Article  PubMed  Google Scholar 

  2. Tulikangas PK, Smith T, Falcone T, Boparai N, Walters MD (2001) Gross and histologic characteristics of laparoscopic injuries with four different energy sources. Fertil Steril 75(4):806–810

    Article  CAS  PubMed  Google Scholar 

  3. Seehofer D, Mogl M, Boas-Knoop S, Unger J, Schirmeier A, Chopra S, Eurich D (2012) Safety and efficacy of new integrated bipolar and ultrasonic scissors compared to conventional laparoscopic 5-mm sealing and cutting instruments. Surg Endosc 26(9):2541–2549. doi:10.1007/s00464-012-2229-0

    Article  PubMed  PubMed Central  Google Scholar 

  4. O´Keeffe K, Fuchs K (2013) Laparoscopic-assisted vaginal hysterectomy with bipolar coagulation cutting forceps (ENSEAL(r) trio device) versus suture technique vaginally: a comparative analysis. J Gynecol Surg 29(3):131–134

    Article  Google Scholar 

  5. Martin B (2006) Elektrochirurgie Handbuch. KLS Martin Group, Martin Brothers GmbH & Co KG V1.1, Umkirch

    Google Scholar 

  6. Harold KL, Pollinger H, Matthews BD, Kercher KW, Sing RF, Heniford BT (2003) Comparison of ultrasonic energy, bipolar thermal energy, and vascular clips for the hemostasis of small-, medium-, and large-sized arteries. Surg Endosc 17(8):1228–1230. doi:10.1007/s00464-002-8833-7

    Article  CAS  PubMed  Google Scholar 

  7. Heniford BT, Matthews BD, Sing RF, Backus C, Pratt B, Greene FL (2001) Initial results with an electrothermal bipolar vessel sealer. Surg Endosc 15(8):799–801. doi:10.1007/s004640080025

    Article  CAS  PubMed  Google Scholar 

  8. Kennedy JS, Stranahan PL, Taylor KD, Chandler JG (1998) High-burst-strength, feedback-controlled bipolar vessel sealing. Surg Endosc 12(6):876–878

    Article  CAS  PubMed  Google Scholar 

  9. Levy B, Emery L (2003) Randomized trial of suture versus electrosurgical bipolar vessel sealing in vaginal hysterectomy. Obstet Gynecol 102(1):147–151

    PubMed  Google Scholar 

  10. Novitsky YW, Rosen MJ, Harrell AG, Sing RF, Kercher KW, Heniford BT (2005) Evaluation of the efficacy of the electrosurgical bipolar vessel sealer (LigaSure) devices in sealing lymphatic vessels. Surg Innov 12(2):155–160. doi:10.1177/155335060501200215

    Article  PubMed  Google Scholar 

  11. Pietrow PK, Weizer AZ, L’Esperance JO, Auge BK, Silverstein A, Cummings T, Preminger GM, Albala DM (2005) PlasmaKinetic bipolar vessel sealing: burst pressures and thermal spread in an animal model. J Endourol 19(1):107–110. doi:10.1089/end.2005.19.107

    Article  PubMed  Google Scholar 

  12. Tamussino K, Afschar P, Reuss J, Perschler M, Ralph G, Winter R (2005) Electrosurgical bipolar vessel sealing for radical abdominal hysterectomy. Gynecol Oncol 96(2):320–322. doi:10.1016/j.ygyno.2004.09.021

    Article  PubMed  Google Scholar 

  13. Katkhouda N, Mavor E, Friedlander MH, Mason RJ, Kiyabu M, Grant SW, Achanta K, Kirkman EL, Narayanan K, Essani R (2001) Use of fibrin sealant for prosthetic mesh fixation in laparoscopic extraperitoneal inguinal hernia repair. Ann Surg 233(1):18–25

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Spivak H, Richardson WS, Hunter JG (1998) The use of bipolar cautery, laparosonic coagulating shears, and vascular clips for hemostasis of small and medium-sized vessels. Surg Endosc 12(2):183–185

    Article  CAS  PubMed  Google Scholar 

  15. Lyons SD, Law KS (2013) Laparoscopic vessel sealing technologies. J Minim Invasive Gynecol 20(3):301–307. doi:10.1016/j.jmig.2013.02.012

    Article  PubMed  Google Scholar 

  16. Weld KJ, Dryer S, Ames CD, Cho K, Hogan C, Lee M, Biswas P, Landman J (2007) Analysis of surgical smoke produced by various energy-based instruments and effect on laparoscopic visibility. J Endourol 21(3):347–351. doi:10.1089/end.2006.9994

    Article  PubMed  Google Scholar 

  17. El-Banna M, Abdel-Atty M, El-Meteini M, Aly S (2000) Management of laparoscopic-related bowel injuries. Surg Endosc 14(9):779–782

    Article  CAS  PubMed  Google Scholar 

  18. Harrell AG, Kercher KW, Heniford BT (2004) Energy sources in laparoscopy. Semin Laparosc Surg 11(3):201–209

    PubMed  Google Scholar 

  19. Tulikangas PK, Beesley S, Boparai N, Falcone T (2001) Assessment of laparoscopic injuries by three methods. Fertil Steril 76(4):817–819

    Article  CAS  PubMed  Google Scholar 

  20. Eick S, Loudermilk B, Walberg E, Wente MN (2013) Rationale, bench testing and in vivo evaluation of a novel 5 mm laparoscopic vessel sealing device with homogeneous pressure distribution in long instrument jaws. Ann Surg Innov Res 7(1):15. doi:10.1186/1750-1164-7-15

    Article  PubMed  PubMed Central  Google Scholar 

  21. Wallwiener CW, Rajab TK, Zubke W, Isaacson KB, Enderle M, Schaller D, Wallwiener M (2008) Thermal conduction, compression, and electrical current–an evaluation of major parameters of electrosurgical vessel sealing in a porcine in vitro model. J Minim Invasive Gynecol 15(5):605–610. doi:10.1016/j.jmig.2008.05.003

    Article  PubMed  Google Scholar 

  22. Reyes DA, Brown SI, Cochrane L, Motta LS, Cuschieri A (2012) Thermal fusion: effects and interactions of temperature, compression, and duration variables. Surg Endosc 26(12):3626–3633. doi:10.1007/s00464-012-2386-1

    Article  PubMed  Google Scholar 

  23. De Wilde RL, Brolmann H, Koninckx PR, Lundorff P, Lower AM, Wattiez A, Mara M, Wallwiener M (2012) The Anti-Adhesions in Gynecology Expert P (2012) Prevention of adhesions in gynaecological surgery: the 2012 European field guideline. Gynecol Surg 9(4):365–368. doi:10.1007/s10397-012-0764-2

    Article  PubMed  PubMed Central  Google Scholar 

  24. Soderstrom RM, Levy BS, Engel T (1989) Reducing bipolar sterilization failures. Obstet Gynecol 74(1):60–63

    CAS  PubMed  Google Scholar 

  25. Wallwiener CW, Rajab TK, Kramer B, Isaacson KB, Brucker S, Wallwiener M (2010) Quantifying electrosurgery-induced thermal effects and damage to human tissue: an exploratory study with the fallopian tube as a novel in vivo in situ model. J Minim Invasive Gynecol 17(1):70–77. doi:10.1016/j.jmig.2009.09.007

    Article  PubMed  Google Scholar 

  26. Stemper BD, Yoganandan N, Stineman MR, Gennarelli TA, Baisden JL, Pintar FA (2007) Mechanics of fresh, refrigerated, and frozen arterial tissue. J Surg Res 139(2):236–242. doi:10.1016/j.jss.2006.09.001

    Article  PubMed  Google Scholar 

  27. Narloch JA, Brandstater ME (1995) Influence of breathing technique on arterial blood pressure during heavy weight lifting. Arch Phys Med Rehabil 76(5):457–462

    Article  CAS  PubMed  Google Scholar 

  28. Uzunoglu FG, Bockhorn M, Fink JA, Reeh M, Vettorazzi E, Gawad KA, Bogoevski D, Vashist YK, Tsui TY, Koenig A, Mann O, Izbicki JR (2013) LigaSure vs. conventional dissection techniques in pancreatic surgery–a prospective randomised single-centre trial. J Gastrointest Surg 17(3):494–500. doi:10.1007/s11605-012-2107-z

    Article  PubMed  Google Scholar 

  29. Ikeda M, Hasegawa K, Sano K, Imamura H, Beck Y, Sugawara Y, Kokudo N, Makuuchi M (2009) The vessel sealing system (LigaSure) in hepatic resection: a randomized controlled trial. Ann Surg 250(2):199–203. doi:10.1097/SLA.0b013e3181a334f9

    Article  PubMed  Google Scholar 

  30. Wilson MJ, Lopez M, Vargas M, Julian C, Tellez W, Rodriguez A, Bigham A, Armaza JF, Niermeyer S, Shriver M, Vargas E, Moore LG (2007) Greater uterine artery blood flow during pregnancy in multigenerational (Andean) than shorter-term (European) high-altitude residents. Am J Physiol Regul Integr Comp Physiol 293(3):R1313–R1324. doi:10.1152/ajpregu.00806.2006

    Article  CAS  PubMed  Google Scholar 

  31. Santini M, Vicidomini G, Fiorello A, Laperuta P, Busiello L (2008) Electrothermal bipolar tissue sealing systems in lung surgery. Multimed Man Cardiothorac Surg. doi:10.1510/mmcts.2007.003111 mmcts 2007 003111

    PubMed  Google Scholar 

  32. Newcomb WL, Hope WW, Schmelzer TM, Heath JJ, Norton HJ, Lincourt AE, Heniford BT, Iannitti DA (2009) Comparison of blood vessel sealing among new electrosurgical and ultrasonic devices. Surg Endosc 23(1):90–96. doi:10.1007/s00464-008-9932-x

    Article  PubMed  Google Scholar 

  33. Hruby GW, Marruffo FC, Durak E, Collins SM, Pierorazio P, Humphrey PA, Mansukhani MM, Landman J (2007) Evaluation of surgical energy devices for vessel sealing and peripheral energy spread in a porcine model. J Urol 178(6):2689–2693. doi:10.1016/j.juro.2007.07.121

    Article  PubMed  Google Scholar 

  34. Presthus JB, Brooks PG, Kirchhof N (2003) Vessel sealing using a pulsed bipolar system and open forceps. J Am Assoc Gynecol Laparosc 10(4):528–533

    Article  PubMed  Google Scholar 

  35. Berdah SV, Hoff C, Poornoroozy PH, Razek P, Van Nieuwenhove Y (2012) Postoperative efficacy and safety of vessel sealing: an experimental study on carotid arteries of the pig. Surg Endosc 26(8):2388–2393. doi:10.1007/s00464-012-2177-8

    Article  PubMed  Google Scholar 

  36. Sindram D, Martin K, Meadows JP, Prabhu AS, Heath JJ, McKillop IH, Iannitti DA (2011) Collagen-elastin ratio predicts burst pressure of arterial seals created using a bipolar vessel sealing device in a porcine model. Surg Endosc 25(8):2604–2612. doi:10.1007/s00464-011-1606-4

    Article  PubMed  Google Scholar 

  37. Pearce J, Thomsen S (1995) Rate process analysis of thermal damage. In: Welch S, von Gemert S (eds) Optical thermal response of laser irradiated tissue. Plenum Press, New York, pp 561–606

    Chapter  Google Scholar 

  38. Ghadially F (1988) Ultrastructural pathology of the cell and matrix, 3rd edn. Butterworths, Boston

    Google Scholar 

  39. Campbell PA, Cresswell AB, Frank TG, Cuschieri A (2003) Real-time thermography during energized vessel sealing and dissection. Surg Endosc 17(10):1640–1645. doi:10.1007/s00464-002-8781-2

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank Covidien, Ethicon, Olympus, Martin, and ERBE for providing the generator and the instruments and Mr. Glier (Ethicon) for helping with and providing the burst pressure measurement device. We would also like to thank Testo for supporting and providing the thermal imaging camera and Tekscan, CMV Hoven GmbH, for the pressure measurement device.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Joachim Rom.

Ethics declarations

Disclosures

No financial support was obtained. Mrs. Brecht, Prof. Wallwiener, Prof. Sohn, Prof. Schuetz, Prof. Domschke, Prof. Fluhr and Drs. Sarah Schott, Dinkic, Golatta, Stenzinger, Kirchner, and Rom have no conflicts of interest or financial ties to disclose.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Brecht, L., Wallwiener, M., Schott, S. et al. Implementation of a novel efficacy score to compare sealing and cutting devices in a porcine model. Surg Endosc 32, 1002–1011 (2018). https://doi.org/10.1007/s00464-017-5778-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00464-017-5778-4

Keywords

Navigation