Skip to main content
Log in

Fan Realizations of Type \(A\) Subword Complexes and Multi-associahedra of Rank 3

  • Published:
Discrete & Computational Geometry Aims and scope Submit manuscript

Abstract

We present complete simplicial fan realizations of any spherical subword complex of type \(A_n\) for \(n\le 3\). This provides complete simplicial fan realizations of simplicial multi-associahedra \(\varDelta _{2k+4,k}\), whose facets are in correspondence with \(k\)-triangulations of a convex \((2k+4)\)-gon. This solves the first open case of the problem of finding fan realizations where polytopality is not known. We also present fan realizations of two previously unknown cases of subword complexes of type \(A_4\), namely the multi-associahedra \(\varDelta _{9,2}\) and \(\varDelta _{11,3}\).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Altshuler, A., Steinberg, L.: An enumeration of combinatorial 3-manifolds with nine vertices. Discrete Math. 16(2), 91–108 (1976)

    Article  MATH  MathSciNet  Google Scholar 

  2. Arkani-Hamed, N., Bourjaily, J.L., Cachazo, F., Goncharov, A.B., Postnikov, A., Trnka, J.: Scattering amplitudes and the positive grassmannian. Preprint, arXiv:1212.5605v2, 158 pages (2014)

  3. Björner, A., Brenti, F.: Combinatorics of Coxeter Groups. GTM, vol. 231. Springer, Berlin (2005)

    MATH  Google Scholar 

  4. Bokowski, J., Pilaud, V.: On symmetric realizations of the simplicial complex of 3-crossing-free sets of diagonals of the octagon. In: Proceedings of the 21st Canadian Conference on Computational Geometry (CCCG2009), pp. 41–44 (2009). http://cccg.ca/proceedings/2009/cccg09_11

  5. Ceballos, C.: On associahedra and related topics. Ph.D. thesis, Freie Universität Berlin, Berlin (2012). http://www.diss.fu-berlin.de/diss/receive/FUDISS_thesis_000000039026

  6. Ceballos, C., Ziegler, G.M.: Realizing the associahedron: mysteries and questions. In: Müller-Hoissen, F., Pallo, J.M., Stasheff, J. (eds.) Associahedra, Tamari Lattices and Related Structures. Progress in Mathematics, vol. 299, pp. 119–127. Springer, Basel (2012)

    Chapter  Google Scholar 

  7. Ceballos, C., Labbé, J.P., Stump, C.: Subword complexes, cluster complexes, and generalized multi-associahedra. J. Algebr. Comb. 39(1), 17–51 (2014)

    Article  MATH  Google Scholar 

  8. Ceballos, C., Santos, F., Ziegler, G.M.: Many non-equivalent realizations of the associahedron. Combinatorica. (2014). http://arxiv.org/abs/1109.5544. doi:10.1007/s00493-014-2959-9

  9. De Loera, J.A., Rambau, J., Santos, F.: Triangulations, Algorithms and Computation in Mathematics, vol. 25. Springer, Berlin (2010)

    Google Scholar 

  10. Elnitsky, S.: Rhombic tilings of polygons and classes of reduced words in Coxeter groups. J. Comb. Theory, Ser. A 77(2), 193–221 (1997)

    Article  MATH  MathSciNet  Google Scholar 

  11. Felsner, S., Weil, H.: A theorem on higher Bruhat orders. Discrete Comput. Geom. 23(1), 121–127 (2000)

    Article  MATH  MathSciNet  Google Scholar 

  12. Hohlweg, C., Lange, C.E.M.C.: Realizations of the associahedron and cyclohedron. Discrete Comput. Geom. 37(4), 517–543 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  13. Humphreys, J.E.: Reflection Groups and Coxeter Groups. Cambridge Studies in Advanced Mathematics, vol. 29. Cambridge University Press, Cambridge (1992)

    MATH  Google Scholar 

  14. Jonsson, J.: Generalized triangulations and diagonal-free subsets of stack polyominoes. J. Comb. Theory, Ser. A 112(1), 117–142 (2005)

    Article  MATH  Google Scholar 

  15. Knutson, A., Miller, E.: Subword complexes in Coxeter groups. Adv. Math. 184(1), 161–176 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  16. Knutson, A., Miller, E.: Gröbner geometry of Schubert polynomials. Ann. Math. 161(3), 1245–1318 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  17. Manin, Y., Shekhtman, V.: Arrangements of hyperplanes, higher braid groups and higher Bruhat orders. Explicit Universal Deformations of Galois Representations. Advanced Studies in Pure Mathematics, pp. 289–308. Academic Press, Boston (1989)

    Google Scholar 

  18. Müller-Hoissen, F., Pallo, J.M., Stasheff, J. (eds.): Associahedra, Tamari Lattices and Related Structures. Progress in Mathematics, vol. 299. Birkhäuser Boston Inc., Boston (2012)

    MATH  Google Scholar 

  19. Pilaud, V., Santos, F.: Multitriangulations as complexes of star polygons. Discrete Comput. Geom. 41(2), 284–317 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  20. Pilaud, V., Pocchiola, M.: Multitriangulations, pseudotriangulations and primitive sorting networks. Discrete Comput. Geom. 48(1), 142–191 (2012)

    Article  MATH  MathSciNet  Google Scholar 

  21. Pilaud, V., Santos, F.: The brick polytope of a sorting network. Eur. J. Comb. 33(4), 632–662 (2012)

    Article  MATH  MathSciNet  Google Scholar 

  22. Pilaud, V., Stump, C.: Brick polytopes of spherical subword complexes: a new approach to generalized associahedra. Adv. Math. 276, 1–61 (2015)

    Article  MathSciNet  Google Scholar 

  23. Reiner, V., Roichman, Y.: Diameter of graphs of reduced words and galleries. Trans. Am. Math. Soc. 365(5), 2779–2802 (2013)

    Article  MATH  MathSciNet  Google Scholar 

  24. Richter-Gebert, J.: Realization Spaces of Polytopes. Springer, Berlin (1996)

    Google Scholar 

  25. Rote, G., Santos, F., Streinu, I.: Expansive motions and the polytope of pointed pseudo-triangulations. Discrete and Computational Geometry. Algorithms Combin., pp. 699–736. Springer, Berlin (2003)

    Chapter  Google Scholar 

  26. Serrano, L., Stump, C.: Maximal fillings of moon polyominoes, simplicial complexes, and Schubert polynomials. Electron. J. Comb. 19(1), P16 (2012) http://www.combinatorics.org/ojs/index.php/eljc/article/view/v19i1p16

  27. Shapiro, B., Shapiro, M., Vainshtein, A.: Connected components in the intersection of two open opposite Schubert cells in \(SL_n({\mathbb{R}})/B\). Int. Math. Res. Not. 1997(10), 469–493 (1997)

    Article  MATH  MathSciNet  Google Scholar 

  28. Stein, W.A., et al.: Sage Mathematics Software (Version 6.2). The Sage Development Team (2014). http://www.sagemath.org

  29. Stump, C.: A new perspective on \(k\)-triangulations. J. Comb. Theory, Ser. A 118(6), 1794–1800 (2011)

  30. Tits, J.: Le problème des mots dans les groupes de Coxeter. Symposia Mathematica (INDAM. Rome, 1967/68), pp. 175–185. Academic Press, London (1969)

    Google Scholar 

  31. Ziegler, G.M.: Higher Bruhat orders and cyclic hyperplane arrangements. Topology 32(2), 259–279 (1993)

    Article  MATH  MathSciNet  Google Scholar 

Download references

Acknowledgments

The first author was partially supported by NSERC. The second author was supported by the government of Canada through an NSERC Banting Postdoctoral Fellowship. He was also supported by a York University research grant. The third author was supported by a FQRNT Doctoral scholarship and SFB Transregio “Discretization in Geometry and Dynamics” (TRR 109). The authors are grateful to Bruno Benedetti, Frank Lutz, Thomas McConville, and Vic Reiner for important conversations that influenced the results in this paper. They are especially grateful to Darij Grinberg for his important comments about Sect. 3, to Francisco Santos for his polytopal construction in Example 6, and to an anonymous referee for suggesting to include Remark 5 about the sign function for finite Coxeter groups. They are also grateful to Vincent Pilaud and Vic Reiner for their comments on previous versions of this paper, and thank two anonymous referees for their careful reading and suggestions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jean-Philippe Labbé.

Additional information

Editor in charge: János Pach

Appendix: Counting Matrices and Their Gale Dual Matrices: General Formulas

Appendix: Counting Matrices and Their Gale Dual Matrices: General Formulas

In this appendix, we present general formulas for the counting matrices \(D_{c,m}\) of type \(A_n\) with \(n\le 3\). We also present formulas for their Gale dual matrices, which are used to exhibit explicit coordinates for the complete simplicial fans realizing the subword complexes and multi-associahedra of type \(A_3\) in Corollaries 1 and 2.

1.1 Counting Matrices

The matrices \(D_{c,m}\) of type \(A_n\) with \(n\le 3\) are given below:

Type \(A_1\), \(c=(s_1)\):

$$\begin{aligned} D_{c,m} = \left( \begin{array}{c@{\quad }c@{\quad }c@{\quad }c@{\quad }c@{\quad }c} 1&1&\ldots&1&1&1 \end{array} \right) _{1\times m}. \end{aligned}$$

Type \(A_2\), \(c=(s_1,s_2)\), with rows {\(\alpha _1\), \(\alpha _1+\alpha _2\), \(\alpha _2\)} in this order:

$$\begin{aligned} D_{c,m} =\left( \begin{array}{c@{\quad }c@{\quad }c@{\quad }c@{\quad }c@{\quad }c@{\quad }c} 1&{} 0 &{} 1 &{} 0 &{}\ldots &{} 1 &{} 0 \\ m &{} 1 &{} m-1 &{} 2 &{}\ldots &{} 1 &{} m \\ 0 &{} 1 &{} 0 &{} 1 &{}\ldots &{} 0 &{} 1 \end{array} \right) _{3\times 2m}. \end{aligned}$$

Type \(A_3\), \(c=(s_2,s_1,s_3)\), with rows {\(\alpha _2\), \(\alpha _1+\alpha _2\), \(\alpha _2+\alpha _3\), \(\alpha _1+\alpha _2+\alpha _3\), \(\alpha _3\), \(\alpha _1\)} in this order:

Type \(A_3\), \(c=(s_1,s_2,s_3)\), with rows {\(\alpha _1\), \(\alpha _1+\alpha _2\), \(\alpha _1+\alpha _2+\alpha _3\), \(\alpha _2\), \(\alpha _2+\alpha _3\), \(\alpha _3\)} in this order:

1.2 Gale Dual Matrices

Below are explicit choices for Gale duals matrices \(M_{c,m}\) of \(D_{c,m}\).

Type \(A_1\), \(c=(s_1)\):

Type \(A_2\), \(c=(s_1,s_2)\):

Type \(A_3\), \(c=(s_2,s_1,s_3)\): Matrix \(M_{213,m}\) in Corollary 1.

Type \(A_3\), \(c=(s_1,s_2,s_3)\): Matrix \(M_{123,m}\) in Corollary 2.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bergeron, N., Ceballos, C. & Labbé, JP. Fan Realizations of Type \(A\) Subword Complexes and Multi-associahedra of Rank 3. Discrete Comput Geom 54, 195–231 (2015). https://doi.org/10.1007/s00454-015-9691-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00454-015-9691-0

Keywords

Mathematics Subject Classification

Navigation