Skip to main content
Log in

Planar Bus Graphs

  • Published:
Algorithmica Aims and scope Submit manuscript

Abstract

Bus graphs are used for the visualization of hypergraphs, for example in VLSI design. Formally, they are specified by bipartite graphs \(G=(B \cup V,E)\). The bus vertices B are realized by horizontal and vertical segments, and the connector vertices V are realized by points and connected orthogonally to the bus segments without any bend; this is called bus realization. The decision whether a bipartite graph admits a bus realization, where connections may cross, is NP-complete. In this paper we show that in contrast the question whether a planar bipartite graph admits a planar bus realization can be answered in polynomial time. First we deal with plane instances, i.e., with the case where a planar embedding is prescribed. We identify three necessary conditions on the partition \(B=B_{\mathrm {V}}\cup B_{\mathrm {H}}\) of the bus vertices, here \(B_{\mathrm {V}}\) denotes the vertical and \(B_{\mathrm {H}}\) the horizontal buses. We provide a test whether a good partition, i.e., a partition obeying these conditions, exists. The test is based on the computation of a maximum matching on some auxiliary graph. Given a good partition we can construct a non-crossing realization of the bus graph on an \(O(n)\times O(n)\) grid in linear time. In the second part we use SPQR-trees to solve the problem for general planar bipartite graphs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

Notes

  1. A planar embedding is a drawing of the vertices together with a description of the cyclic order of their adjacent vertices. Often a drawing with curves representing the edges is used to illustrate an embedding.

  2. In [24] a slightly faster randomized algorithm for planar graphs has been proposed.

  3. Some descriptions also use type Q nodes, so that SPQR are the possible types.

References

  1. Ada, A., Coggan, M., Di Marco, P., Doyon, A., Flookes, L., Heilala, S., Kim, E., Wing, J.L.O., Préville-Ratelle, L.-F., Whitesides, S., Yu, N.: On bus graph realizability. In: Proceedings of CCCG, pp. 229–232 (2007)

  2. Biedl, T.C., Bose, P., Demaine, E.D., Lubiw, A.: Efficient algorithms for Petersen’s matching theorem. J. Algorithms 38(1), 110–134 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  3. de Fraysseix, H., Ossona de Mendez, P., Pach, J.: Representations of planar graphs by segments. In: Intuitive Geometry (Szeged, 1991), pp. 109–117. Colloq. Math. Soc. János Bolyai vol. 63 (1994)

  4. de Fraysseix, H., Ossona de Mendez, P., Pach, J.: A left-first search algorithm for planar graphs. Discrete Comput. Geom. 13, 459–468 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  5. de Fraysseix, H., Ossona de Mendez, P.: On topological aspects of orientations. Discrete Math. 229, 57–72 (2001)

  6. Di Battista, G., Eades, P., Tamassia, R., Tollis, I.G.: Graph Drawing: Algorithms for the Visualization of Graphs. Prentice-Hall, Englewood Cliffs (1999)

    MATH  Google Scholar 

  7. Di Battista, G., Tamassia, R.: Incremental planarity testing (extended abstract). In: Proceedings Foundations of Computer Science, pp. 436–441 (1989)

  8. Di Battista, G., Tamassia, R.: On-line maintenance of triconnected components with SPQR-trees. Algorithmica 15(4), 302–318 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  9. Dickerson, M., Eppstein, D., Goodrich, M.T., Meng, J.Y.: Confluent drawings: visualizing non-planar diagrams in a planar way. J. Graph Alg. Appl. 9(1), 31–52 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  10. Eppstein, D.: Planar Lombardi drawings for subcubic graphs. In: Proceedings of Graph Drawing, vol. 7704 of Lecture Notes in Computer Science, pp. 126–137. Springer, Berlin (2012)

  11. Felsner, S.: Rectangle and square representations of planar graphs. In: Pach, J. (ed.) Thirty Essays in Geometric Graph Theory, vol. 29 of Algorithms and Combinatorics, pp. 213–248. Springer, Berlin (2012)

  12. Felsner, S., Huemer, C., Kappes, S., Orden, D.: Binary labelings for plane quadrangulations and their relatives. Discrete Math. Theor. Comput. Sci. 12(3), 115–138 (2010)

    MathSciNet  MATH  Google Scholar 

  13. Gansner, E.R., Koren, Y.: Improved circular layouts. In: Proceedings of Graph Drawing, vol. 4372 of Lecture Notes in Computer Science, pp. 386–398. Springer, Berlin (2006)

  14. Gutwenger, C., Jünger, M., Leipert, S., Mutzel, P., Percan, M., Weiskircher, R.: Subgraph induced planar connectivity augmentation. In: Proceedings of Workshop Graph-Theoretic Concepts Computer Science, vol. 2880 of Lecture Notes in Computer Science, pp. 261–272. Springer, Berlin (2003)

  15. Gutwenger, C., Mutzel, P.: A linear time implementation of SPQR-trees. In: Proceedings of Graph Drawing, vol. 1984 of Lecture Notes in Computer Science, pp. 77–90. Springer, Berlin (2000)

  16. Hanan, M.: On Steiner’s problem with rectilinear distance. SIAM J. Appl. Math 14, 255–265 (1966)

    Article  MathSciNet  MATH  Google Scholar 

  17. Harary, F., Plummer, M.: On the core of a graph. Proc. Lond. Math. Soc. 17, 249–257 (1967)

    MathSciNet  MATH  Google Scholar 

  18. Hartman, I.B.-H., Newman, I., Ziv, R.: On grid intersection graphs. Discrete Math. 97, 41–52 (1991)

    Article  MathSciNet  MATH  Google Scholar 

  19. He, X.: On finding the rectangular duals of planar triangular graphs. SIAM J. Comput. 22, 1218–1226 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  20. Hwang, F.W., Richards, D.S., Winter, P.: The Steiner Tree Problem, vol. 53 of Annals of Discrete Mathematics, North Holland (1992)

  21. Kaufmann, M., Wagner, D. (eds): Drawing Graphs, Methods and Models, vol. 2025 of Lecture Notes in Computer Science. Springer, Berlin (2001)

  22. Lengauer, T.: VLSI theory. In Handbook of Theoretical Computer Science, Volume A: Algorithms and Complexity (A), pp. 835–868. Elsevier and MIT Press (1990)

  23. Micali, S., Vazirani, V.V.: An O(\(\sqrt{|V|} |{E}|\)) algorithm for finding maximum matching in general graphs. In: Proceedings of Foundations Computer Science, pp. 17–27 (1980)

  24. Mucha, M., Sankowski, P.: Maximum matchings in planar graphs via Gaussian elimination. Algorithmica 45, 3–20 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  25. Nishizeki, T., Rahman, Md.S.: Planar Graph Drawing. World Scientific, Singapore (2004)

  26. Petersen, J.P.C.: Die theorie der regulären graphen. Acta Math. 15, 193–220 (1891)

    Article  MathSciNet  MATH  Google Scholar 

  27. Rosenstiehl, P., Tarjan, R.E.: Rectilinear planar layouts and bipolar orientations of planar graphs. Discrete Comput. Geom. 1, 343–353 (1986)

    Article  MathSciNet  MATH  Google Scholar 

  28. Tamassia, R., Tollis, I.G.: A unified approach to visibility representation of planar graphs. Discrete Comput. Geom. 1, 321–341 (1986)

    Article  MathSciNet  MATH  Google Scholar 

  29. Thompson, C.D.: A Complexity Theory for VLSI. Ph.D. thesis, Carnegie-Mellon University (1980)

Download references

Acknowledgements

We thank the anonymous reviewers for their valuable comments and their persistence. With their help the quality of the paper has been improved significantly.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michael Kaufmann.

Additional information

T. Bruckdorfer, M. Kaufmann: Partially supported by EuroGIGA project GraDR 10-EuroGIGA-OP-003 S. Felsner: Partially supported by DFG Grant FE-340/7-2 and ESF EuroGIGA project Compose.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bruckdorfer, T., Felsner, S. & Kaufmann, M. Planar Bus Graphs. Algorithmica 80, 2260–2285 (2018). https://doi.org/10.1007/s00453-017-0321-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00453-017-0321-5

Keywords

Navigation