Skip to main content
Log in

Quantum Algorithm for Triangle Finding in Sparse Graphs

  • Published:
Algorithmica Aims and scope Submit manuscript

Abstract

This paper presents a quantum algorithm for triangle finding over sparse graphs that improves over the previous best quantum algorithm for this task by Buhrman et al. (SIAM J Comput 34(6):1324–1330, 2005). Our algorithm is based on the recent \({\tilde{O}}(n^{5/4})\)-query algorithm given by Le Gall (Proceedings of the 55th IEEE annual symposium on foundations of computer science, pp 216–225, 2014) for triangle finding over dense graphs (here n denotes the number of vertices in the graph). We show in particular that triangle finding can be solved with \(O(n^{5/4-\epsilon })\) queries for some constant \(\epsilon >0\) whenever the graph has at most \(O(n^{2-c})\) edges for some constant \(c>0\).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

Notes

  1. In this paper the notation \({\tilde{O}}(\cdot )\) removes \(\mathrm {polylog}n\) factors.

References

  1. Alon, N., Yuster, R., Zwick, U.: Finding and counting given length cycles. Algorithmica 17, 354–364 (1997)

    MathSciNet  MATH  Google Scholar 

  2. Ambainis, A.: Quantum walk algorithm for element distinctness. SIAM J. Comput. 37(1), 210–239 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  3. Ambainis, A.: Quantum search with variable times. Theory Comput. Syst. 47(3), 786–807 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  4. Belovs, A.: Span programs for functions with constant-sized 1-certificates: extended abstract. In: Proceedings of the 44th Symposium on Theory of Computing, pp. 77–84 (2012)

  5. Brassard, G., Høyer, P., Tapp, A.: Quantum counting. In: Proceedings of the 25th International Colloquium on Automata, Languages and Programming, pp. 820–831 (1998)

  6. Buhrman, H., Dürr, C., Heiligman, M., Høyer, P., Magniez, F., Santha, M., de Wolf, R.: Quantum algorithms for element distinctness. SIAM J. Comput. 34(6), 1324–1330 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  7. Childs, A.M., Kothari, R.: Quantum query complexity of minor-closed graph properties. SIAM J. Comput. 41(6), 1426–1450 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  8. Grover, L.K.: A fast quantum mechanical algorithm for database search. In: Proceedings of the 28th Symposium on the Theory of Computing, pp. 212–219 (1996)

  9. Itai, A., Rodeh, M.: Finding a minimum circuit in a graph. SIAM J. Comput. 7(4), 413–423 (1978)

    Article  MathSciNet  MATH  Google Scholar 

  10. Janson, S., Luczak, T.: Random Graphs. Wiley, New York (2011)

    MATH  Google Scholar 

  11. Jeffery, S., Kothari, R., Magniez, F.: Nested quantum walks with quantum data structures. In: Proceedings of the 24th Annual ACM-SIAM Symposium on Discrete Algorithms, pp. 1474–1485 (2013)

  12. Le Gall, F.: Improved quantum algorithm for triangle finding via combinatorial arguments. In: Proceedings of the 55th IEEE Annual Symposium on Foundations of Computer Science, pp. 216–225 (2014)

  13. Lee, T., Magniez, F., Santha, M.: Improved quantum query algorithms for triangle finding and associativity testing. In: Proceedings of the 24th Annual ACM-SIAM Symposium on Discrete Algorithms, pp. 1486–1502 (2013)

  14. Magniez, F., Santha, M., Szegedy, M.: Quantum algorithms for the triangle problem. SIAM J. Comput. 37(2), 413–424 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  15. Magniez, F., Nayak, A., Roland, J., Santha, M.: Search via quantum walk. SIAM J. Comput. 40(1), 142–164 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  16. Patrascu, M.: Towards polynomial lower bounds for dynamic problems. In: Proceedings of the 42nd Symposium on Theory of Computing, pp. 603–610 (2010)

  17. Vassilevska Williams, V., Williams, R.: Subcubic equivalences between path, matrix and triangle problems. In: Proceedings of the 51th Symposium on Foundations of Computer Science, pp. 645–654 (2010)

  18. Vassilevska Williams, V., Williams, R.: Finding, minimizing, and counting weighted subgraphs. SIAM J. Comput. 42(3), 831–854 (2013)

Download references

Acknowledgements

The authors are grateful to Mathieu Laurière, Frédéric Magniez, Keiji Matsumoto, Harumichi Nishimura and Seiichiro Tani for helpful comments. This work is supported by the Grant-in-Aid for Young Scientists (B) No. 24700005 and the Grant-in-Aid for Scientific Research (A) No. 24240001 of the Japan Society for the Promotion of Science, and the Grant-in-Aid for Scientific Research on Innovative Areas No. 24106009 of the Ministry of Education, Culture, Sports, Science and Technology in Japan.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shogo Nakajima.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Le Gall, F., Nakajima, S. Quantum Algorithm for Triangle Finding in Sparse Graphs. Algorithmica 79, 941–959 (2017). https://doi.org/10.1007/s00453-016-0267-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00453-016-0267-z

Keywords

Navigation