Skip to main content
Log in

Polynomial Time Algorithm for Min-Ranks of Graphs with Simple Tree Structures

  • Published:
Algorithmica Aims and scope Submit manuscript

Abstract

The min-rank of a graph was introduced by Haemers (Algebr. Methods Graph Theory 25:267–272, 1978) to bound the Shannon capacity of a graph. This parameter of a graph has recently gained much more attention from the research community after the work of Bar-Yossef et al. (in Proceedings of the 47th Annual IEEE Symposium on Foundations of Computer Science (FOCS), pp. 197–206, 2006). In their paper, it was shown that the min-rank of a graph \(\mathcal {G}\) characterizes the optimal scalar linear solution of an instance of the Index Coding with Side Information (ICSI) problem described by the graph \(\mathcal {G}\).

It was shown by Peeters (Combinatorica 16(3):417–431, 1996) that computing the min-rank of a general graph is an NP-hard problem. There are very few known families of graphs whose min-ranks can be found in polynomial time. In this work, we introduce a new family of graphs with efficiently computed min-ranks. Specifically, we establish a polynomial time dynamic programming algorithm to compute the min-ranks of graphs having simple tree structures. Intuitively, such graphs are obtained by gluing together, in a tree-like structure, any set of graphs for which the min-ranks can be determined in polynomial time. A polynomial time algorithm to recognize such graphs is also proposed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17

Similar content being viewed by others

References

  1. Ahlswede, R., Cai, N., Li, S.Y.R., Yeung, R.W.: Network information flow. IEEE Trans. Inf. Theory 46, 1204–1216 (2000)

    Article  MATH  MathSciNet  Google Scholar 

  2. Bar-Yossef, Z., Birk, Z., Jayram, T.S., Kol, T.: Index coding with side information. In: Proceedings of the 47th Annual IEEE Symposium on Foundations of Computer Science (FOCS), pp. 197–206 (2006)

    Google Scholar 

  3. Berliner, Y., Langberg, M.: Index coding with outerplanar side information. In: Proceedings of the IEEE Symposium on Information Theory (ISIT), Saint Petersburg, Russia, pp. 869–873 (2011)

    Google Scholar 

  4. Berliner, Y., Langberg, M.: Index coding with outerplanar side information. Manuscript (2011). Available at http://www.openu.ac.il/home/mikel/papers/outer.pdf

  5. Birk, Y., Kol, T.: Informed-source coding-on-demand (ISCOD) over broadcast channels. In: Proceedings of the IEEE Conference on Computer Communications (INFOCOM), San Francisco, CA, pp. 1257–1264 (1998)

    Google Scholar 

  6. Birk, Y., Kol, T.: Coding-on-demand by an informed source (ISCOD) for efficient broadcast of different supplemental data to caching clients. IEEE Trans. Inf. Theory 52(6), 2825–2830 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  7. Chartrand, G., Harary, F.: Planar permutation graphs. Ann. Inst. Henri Poincaré B, Probab. Stat. 3(4), 433–438 (1967)

    MATH  MathSciNet  Google Scholar 

  8. Chaudhry, M.A.R., Sprintson, A.: Efficient algorithms for index coding. In: Proceedings of the IEEE Conference on Computer Communications (INFOCOM), pp. 1–4 (2008)

    Google Scholar 

  9. Chlamtac, E., Haviv, I.: Linear index coding via semidefinite programming. In: Proceedings of the 23rd Annual ACM-SIAM Symposium on Discrete Algorithms (SODA), pp. 406–419 (2012)

    Chapter  Google Scholar 

  10. Chudnovsky, M., Robertson, N., Seymour, P., Thomas, R.: The strong perfect graph theorem. Ann. Math. 164, 51–229 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  11. Cornuejols, G., Liu, X., Vuskovic, K.: A polynomial time algorithm for recognizing perfect graphs. In: Proceedings of the 48th Annual IEEE Symposium on Foundations of Computer Science (FOCS), pp. 20–27 (2003)

    Google Scholar 

  12. Dau, S.H.: See web.spms.ntu.edu.sg/~daus0001/mr-small-graphs.html (2011)

  13. Dau, S.H.: See web.spms.ntu.edu.sg/~daus0001/mr.html (2011)

  14. Eén, N., Sörensson, N.: An extensible SAT-solver. In: Theory and Applications of Satisfiability Testing. Lecture Notes in Computer Science, vol. 2919, pp. 333–336. Springer, Berlin (2004)

    Chapter  Google Scholar 

  15. El Rouayheb, S., Sprintson, A., Georghiades, C.: On the index coding problem and its relation to network coding and matroid theory. IEEE Trans. Inf. Theory 56(7), 3187–3195 (2010)

    Article  MathSciNet  Google Scholar 

  16. Haemers, W.: An upper bound for the Shannon capacity of a graph. Algebr. Methods Graph Theory 25, 267–272 (1978)

    MathSciNet  Google Scholar 

  17. Haviv, I., Langberg, M.: On linear index coding for random graphs. In: Proceedings of the IEEE International Symposium on Information Theory (ISIT), pp. 2231–2235 (2012)

    Google Scholar 

  18. Katti, S., Rahul, H., Hu, W., Katabi, D., Médard, M., Crowcroft, J.: Xors in the air: practical wireless network coding. ACM SIGCOMM Comput. Commun. Rev. 36(4), 243–254 (2006)

    Article  Google Scholar 

  19. Katti, S., Katabi, D., Balakrishnan, H., Médard, M.: Symbol-level network coding for wireless mesh networks. ACM SIGCOMM Comput. Commun. Rev. 38(4), 401–412 (2008)

    Article  Google Scholar 

  20. Koetter, R., Médard, M.: An algebraic approach to network coding. IEEE/ACM Tranans. Netw. 11, 782–795 (2003)

    Article  Google Scholar 

  21. Langberg, M., Sprintson, A.: On the hardness of approximating the network coding capacity. In: Proceedings IEEE Symp. on Inform. Theory (ISIT), Toronto, Canada, pp. 315–319 (2008)

    Google Scholar 

  22. Lovász, L.: On the Shannon capacity of a graph. IEEE Trans. Inf. Theory 25, 1–7 (1979)

    Article  MATH  Google Scholar 

  23. Lubetzky, E., Stav, U.: Non-linear index coding outperforming the linear optimum. In: Proceedings of the 48th Annual IEEE Symposium on Foundations of Computer Science (FOCS), pp. 161–168 (2007)

    Chapter  Google Scholar 

  24. Peeters, R.: Orthogonal representations over finite fields and the chromatic number of graphs. Combinatorica 16(3), 417–431 (1996)

    Article  MATH  MathSciNet  Google Scholar 

  25. Shannon, C.E.: The zero-error capacity of a noisy channel. IRE Trans. Inf. Theory 3, 3–15 (1956)

    Article  Google Scholar 

  26. Tarjan, R.E.: A note on finding the bridges of a graph. Inf. Proces. Lett. 160–161 (1974)

  27. Wiegers, M.: Recognizing outerplanar graphs in linear time. In: Proceedings of the International Workshop WG ’86 on Graph-Theoretic Concepts in Computer Science, pp. 165–176 (1987)

    Chapter  Google Scholar 

Download references

Acknowledgements

We thank Vitaly Skachek for useful comments on the draft of the paper. We also thank Michael Langberg for providing the preprints [3, 17].

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Son Hoang Dau.

Additional information

This work is supported in part by the National Research Foundation of Singapore (Research Grant NRF-CRP2-2007-03).

Rights and permissions

Reprints and permissions

About this article

Cite this article

Dau, S.H., Chee, Y.M. Polynomial Time Algorithm for Min-Ranks of Graphs with Simple Tree Structures. Algorithmica 71, 152–180 (2015). https://doi.org/10.1007/s00453-013-9789-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00453-013-9789-9

Keywords

Navigation