Skip to main content
Log in

Mechanisms of the inhibition of enzymatic hydrolysis of waste pulp fibers by calcium carbonate and the influence of nonionic surfactant for mitigation

  • Research Paper
  • Published:
Bioprocess and Biosystems Engineering Aims and scope Submit manuscript

Abstract

Recycled paper mills produce large quantities of fibrous rejects and fines which are usually sent to landfills as solid waste. These cellulosic materials can be enzymatically hydrolyzed into sugars for the production of biofuels and biomaterials. Paper mill wastes also contain large amounts of calcium carbonate which inhibits cellulase activity. The calcium carbonate (30%, w/w) decreased 40–60% of sugar yield of unbleached softwood kraft pulp. The prime mechanisms for this are by pH variation, competitive and non-productive binding, and aggregation effect. Addition of acetic acid (pH adjustment) increased the sugar production from 19 to 22 g/L of paper mill waste fibers. Strong affinity of enzyme—calcium carbonate decreased free enzyme in solution and hindered sugar production. Electrostatic and hydrogen bond interactions are mainly possible mechanism of enzyme—calcium carbonate adsorption. The application of the nonionic surfactant Tween 80 alleviated the non-productive binding of enzyme with the higher affinity on calcium carbonate. Dissociated calcium ion also inhibited the hydrolysis by aggregation of enzyme.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. 2014 Global Forest Products Facts and Figures (2014) http://www.fao.org/forestry/statistics/80938/en/. Accessed Feb 2016

  2. Lark N, Xia Y, Qin C-G, Gong C, Tsao G (1997) Production of ethanol from recycled paper sludge using cellulase and yeast, Kluveromyces marxianus. Biomass Bioenergy 12(2):135–143

    Article  CAS  Google Scholar 

  3. Min BC, Bhayani B, Jampana V, Ramarao B (2015) Enhancement of the enzymatic hydrolysis of fines from recycled paper mill waste rejects. Bioresour Bioprocess 2(1):1–10

    Article  Google Scholar 

  4. Jeffries TW, Schartman R (1999) Bioconversion of secondary fiber fines to ethanol using counter-current enzymatic saccharification and co-fermentation. In: Twentieth Symposium on Biotechnology for Fuels and Chemicals, Springer, Berlin, pp 435–444

    Chapter  Google Scholar 

  5. Fan Z, South C, Lyford K, Munsie J, van Walsum P, Lynd LR (2003) Conversion of paper sludge to ethanol in a semicontinuous solids-fed reactor. Bioprocess Biosyst Eng 26(2):93–101

    Article  CAS  Google Scholar 

  6. Kang L (2011) Bioconversion of pulp and paper mills sludge and prehydrolysate stream into ethanol and cellulase enzyme. Dissertation, Ph. D. Thesis, Auburn University, Auburn

    Google Scholar 

  7. Kang L, Wang W, Lee YY (2010) Bioconversion of kraft paper mill sludges to ethanol by SSF and SSCF. Appl Biochem Biotechnol 161(1–8):53–66

    Article  CAS  Google Scholar 

  8. Chen H, Venditti RA, Jameel H, Park S (2012) Enzymatic hydrolysis of recovered office printing paper with low enzyme dosages to produce fermentable sugars. Appl Biochem Biotechnol 166(5):1121–1136

    Article  CAS  Google Scholar 

  9. Prasetyo J, Park EY (2013) Waste paper sludge as a potential biomass for bio-ethanol production. Korean J Chem Eng 30(2):253–261

    Article  CAS  Google Scholar 

  10. Gupta R, Sharma KK, Kuhad RC (2009) Separate hydrolysis and fermentation (SHF) of Prosopis juliflora, a woody substrate, for the production of cellulosic ethanol by Saccharomyces cerevisiae and Pichia stipitis-NCIM 3498. Bioresour Technol 100(3):1214–1220

    Article  CAS  Google Scholar 

  11. Eriksson T, Börjesson J, Tjerneld F (2002) Mechanism of surfactant effect in enzymatic hydrolysis of lignocellulose. Enzyme Microb Technol 31(3):353–364

    Article  CAS  Google Scholar 

  12. Reye JT, Maxwell KE, Banerjee S (2011) Cationic polyacrylamides promote binding of cellulase and amylase. J Biotechnol 154(4):269–273

    Article  CAS  Google Scholar 

  13. Helle SS, Duff SJ, Cooper DG (1993) Effect of surfactants on cellulose hydrolysis. Biotechnol Bioeng 42(5):611–617

    Article  CAS  Google Scholar 

  14. Kaar WE, Holtzapple MT (1998) Benefits from Tween during enzymic hydrolysis of corn stover. Biotechnol Bioeng 59(4):419–427

    Article  CAS  Google Scholar 

  15. Seo D-J, Fujita H, Sakoda A (2011) Structural changes of lignocelluloses by a nonionic surfactant, Tween 20, and their effects on cellulase adsorption and saccharification. Bioresour Technol 102(20):9605–9612

    Article  CAS  Google Scholar 

  16. Kim M, Lee S, Ryu DD, Reese E (1982) Surface deactivation of cellulase and its prevention. Enzyme Microb Technol 4(2):99–103

    Article  CAS  Google Scholar 

  17. Malmsten M, Van Alstine JM (1996) Adsorption of poly (ethylene glycol) amphiphiles to form coatings which inhibit protein adsorption. J Colloid Interface Sci 177(2):502–512

    Article  CAS  Google Scholar 

  18. Duarte GV, Ramarao BV, Amidon TE, Ferreira PT (2011) Effect of hot water extraction on hardwood kraft pulp fibers (Acer saccharum, sugar maple). Ind Eng Chem Res 50(17):9949–9959

    Article  CAS  Google Scholar 

  19. Yasarla LR, Ramarao BV (2012) Dynamics of flocculation of lignocellulosic hydrolyzates by polymers. Ind Eng Chem Res 51(19):6847–6861

    Article  CAS  Google Scholar 

  20. Bradford MM (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 72(1):248–254

    Article  CAS  Google Scholar 

  21. Ko S-O, Schlautman MA, Carraway ER (1998) Partitioning of hydrophobic organic compounds to sorbed surfactants. 1. Experimental studies. Environ Sci Technol 32 (18):2769–2775

    Article  CAS  Google Scholar 

  22. Mousset E, Oturan N, van Hullebusch ED, Guibaud G, Esposito G, Oturan MA (2013) A new micelle-based method to quantify the Tween 80® surfactant for soil remediation. Agron Sustain Dev 33(4):839–846

    Article  CAS  Google Scholar 

  23. Zhu L, Zhou W (2008) Partitioning of polycyclic aromatic hydrocarbons to solid-sorbed nonionic surfactants. Environ Pollut 152(1):130–137

    Article  CAS  Google Scholar 

  24. Hu M, Niculescu M, Zhang X, Hui A (2003) High-performance liquid chromatographic determination of polysorbate 80 in pharmaceutical suspensions. J Chromatogr A 984(2):233–236

    Article  CAS  Google Scholar 

  25. Wuelfing WP, Kosuda K, Templeton AC, Harman A, Mowery MD, Reed RA (2006) Polysorbate 80 UV/vis spectral and chromatographic characteristics–defining boundary conditions for use of the surfactant in dissolution analysis. J Pharm Biomed Anal 41(3):774–782

    Article  CAS  Google Scholar 

  26. Saini JK, Patel AK, Adsul M, Singhania RR (2016) Cellulase adsorption on lignin: a roadblock for economic hydrolysis of biomass. Renew Energy 98:29–42

    Article  CAS  Google Scholar 

  27. Liu H, Sun J, Leu S-Y, Chen S (2016) Toward a fundamental understanding of cellulase-lignin interactions in the whole slurry enzymatic saccharification process. Biofuels Bioprod Biorefining 10(5):648–663

    Article  CAS  Google Scholar 

  28. Kuno H, Abe R (1961) The adsorption of polyoxyethylated nonylphenol on calcium carbonate in aqueous solution. Kolloid-Zeitschrift 177 (1):40–44

    Article  CAS  Google Scholar 

  29. Min B, Bhayani B, RAMARAO B (2013) Enzymatic hydrolysis of old corrugated cardboard (OCC) fines from recycled linerboard mill waste rejects. In: American Institute of Chemical Engineers (AICHE) Annual Meeting, San Francisco

  30. Min BC, Bhayani BV, Ramarao BV (2015) Enzymatic Hydrolysis of Old Corrugated Cardboard (OCC) Fines from Recycled Linerboard Mill Waste Rejects. US Patent 20,150,259,719

  31. Somasundaran P, Mehta SC, Yu X, Krishnakumar S (2009) Colloid systems and interfaces stability of dispersions through polymer and surfactant adsorption. CRC Press, Boca Raton

    Google Scholar 

  32. Akers R, Riley P (1974) The adsorption of polyoxyethylene alkyl-phenols onto calcium carbonate from aqueous solution. J Colloid Interface Sci 48(1):162–164

    Article  CAS  Google Scholar 

  33. Suhara T, Esumi K, Meguro K (1983) The effect of surfactant on formation of calcium carbonate. Bull Chem Soc Jpn 56(10):2932–2936

    Article  CAS  Google Scholar 

  34. Patist A, Bhagwat S, Penfield K, Aikens P, Shah D (2000) On the measurement of critical micelle concentrations of pure and technical-grade nonionic surfactants. J Surfactants Deterg 3(1):53–58

    Article  CAS  Google Scholar 

  35. Chu KH, Feng X (2013) Enzymatic conversion of newspaper and office paper to fermentable sugars. Process Saf Environ Prot 91(1):123–130

    Article  CAS  Google Scholar 

  36. Pal GP, Elce JS, Jia Z (2001) Dissociation and aggregation of calpain in the presence of calcium. J Biol Chem 276(50):47233–47238

    Article  CAS  Google Scholar 

  37. Arunachalam U, Kellis JT (1996) Folding and stability of endoglucanase III, a single-domain cellulase from Trichoderma reesei. BioChemistry 35(35):11379–11385

    Article  CAS  Google Scholar 

  38. Marshall RJ, Green ML (1980) The effect of the chemical structure of additives on the coagulation of casein micelle suspensions by rennet. J Dairy Res 47(03):359–369

    Article  CAS  Google Scholar 

  39. Dalgleish DG (1983) Coagulation of renneted bovine casein micelles: dependence on temperature, calcium ion concentration and ionic strength. J Dairy Res 50(03):331–340

    Article  CAS  Google Scholar 

  40. Ju Z, Kilara A (1998) Properties of gels induced by heat, protease, calcium salt, and acidulant from calcium ion-aggregated whey protein isolate. J Dairy Sci 81(5):1236–1243

    Article  CAS  Google Scholar 

  41. Zittle C, Pepper L (1958) Influence of hydrogen and calcium ion concentrations, temperature, and other factors on the rate of aggregation of casein. J Dairy Sci 41(12):1671–1682

    Article  CAS  Google Scholar 

Download references

Acknowledgements

Partial support of this work was provided by a Grant from the New York State Energy Research and Development Authority (NYSERDA) through the Grant agreement 25919. Member companies of the Empire State Paper Research Institute are also acknowledged for support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bandaru V. Ramarao.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Min, B.C., Ramarao, B.V. Mechanisms of the inhibition of enzymatic hydrolysis of waste pulp fibers by calcium carbonate and the influence of nonionic surfactant for mitigation. Bioprocess Biosyst Eng 40, 799–806 (2017). https://doi.org/10.1007/s00449-017-1745-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00449-017-1745-7

Keywords

Navigation