Skip to main content
Log in

Contribution of silver nanoparticles to extend Salmonella typhimurium growth under various respiration regimes

  • Original Paper
  • Published:
Bioprocess and Biosystems Engineering Aims and scope Submit manuscript

Abstract

Living cells interact with different forms of metal; the resulted biochemical alteration depends on the dose. Over an average dose in ionic form, metals interact with respiration processes at various levels, and it induces oxidative stress by shifting the whole oxydoreduction equilibrium. To correct the toxicity, cell develops different ways to cancel the effect of the exceeded charges, and it reduces the ion to get a more stable form. In the case of nanoparticles, the reactivity of surface has been enhanced that can alter the biological mechanisms; the cell may develop different strategies to minimize this reactivity. The current study is focused on the pursuing of cell behavior regarding the presence of nanoparticles and their associated metals. Nanoparticles have been synthesized using bio-reducing agents and then were structurally characterized using X-ray diffraction, UV–Vis, and infra-red spectroscopy. The oxydoreduction flexibility of the post-synthesis modified nanoparticles was tested in vitro. Interactions with cells were done using Salmonella under various respiration conditions. The final results show the possible correction of oxidative stress effects and the recuperation of respiration.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Makarov VV, Love OV, Sinitsyna AJ, Makarova SS, Yaminsky IV, Taliansky ME, Kalinina NO (2014) “Green” nanotechnologies: synthesis of metal nanoparticles using plants. Acta Nat 6(1):35–44

    CAS  Google Scholar 

  2. Iravani S (2011) Green synthesis of metal nanoparticles using plants. Green Chem 13:2638–2650. doi:10.1039/C1GC15386B

    Article  CAS  Google Scholar 

  3. Ahmed S, Saifullah Ahmad M, Swami BL, Ikram S (2015) Green synthesis of silver nanoparticles using Azadirachta indica aqueous leaf extract. J Radiat Res Appl Sci. doi:10.1016/j.jrras.2015.06.006

    Google Scholar 

  4. Akhtar MS, Panwar J, Yun Y-S (2013) Biogenic synthesis of metallic nanoparticles by plant extracts. ACS Sustain Chem Eng 1:591–602. doi:10.1021/sc300118u

    Article  CAS  Google Scholar 

  5. Oluwaniyi OO, Adegoke HI, Adesuji ET, Alabi AB, Bodede SO, Labulo AH, Oseghale CO (2015) Biosynthesis of silver nanoparticles using aqueous leaf extract of Thevetia peruviana Juss and its antimicrobial activities. Appl Nanosci. doi:10.1007/s13204-015-0505-8

    Google Scholar 

  6. Metz KM, Sanders SE, Pender JP, Dix MR, Hinds DT, Quinn SJ, Ward AD, Duffy P, Cullen RJ, Colavita PE (2015) Green synthesis of metal nanoparticles via natural extracts: the biogenic nanoparticle corona and its effects on reactivity. ACS Sustain Chem Eng 3(7):1610–1617. doi:10.1021/acssuschemeng.5b00304

    Article  CAS  Google Scholar 

  7. Ibrahim HMM (2015) Green synthesis and characterization of silver nanoparticles using banana peel extract and their antimicrobial activity against representative microorganisms. J Radiat Res Appl Sci 8:265–275. doi:10.1016/j.jrras.2015.01.007

    Article  Google Scholar 

  8. Ivask A, Kurvet I, Kasemets K, Blinova I, Aruoja V, Suppi S, Vija H, Käkinen A, Titma T, Heinlaan M, Visnapuu M, Koller D, Kisand V, Kahru A (2014) Size-dependent toxicity of silver nanoparticles to bacteria, yeast, algae, crustaceans and mammalian cells in vitro. PLoS One 9(7):e102108. doi:10.1371/journal.pone.0102108

    Article  Google Scholar 

  9. Seabra AB, Durán N (2015) Nanotoxicology of metal oxide nanoparticles. Metals 5:934–975. doi:10.3390/met5020934

    Article  CAS  Google Scholar 

  10. Maurer-Jones MA, Gunsolus IL, Meyer BM, Christenson CJ, Haynes CL (2013) Impact of TiO2 nanoparticles on growth, biofilm formation, and flavin secretion in Shewanella oneidensis. Anal Chem 85(12):5810–5818. doi:10.1021/ac400486u

    Article  CAS  Google Scholar 

  11. Haddad PS, Seabra AB (2012) Biomedical applications of magnetic nanoparticles. In: Martinez AI (ed) Iron oxides: structure, properties and applications, vol 1. Nova Science Publishers Inc, New York, pp 165–188

    Google Scholar 

  12. Wu X, Zhao F, Rahunen N, Varcoe JR, Avignone-Rossa C, Thumser AE, Slade RCT (2011) A role for microbial palladium nanoparticles in extracellular electron transfer. Angew Chem Int Ed 50:427–430. doi:10.1002/anie.201002951

    Article  CAS  Google Scholar 

  13. Giustini AJ, Petryk AA, Cassim SM, Tate JA, Baker I, Hoopes PJ (2010) Magnetic nanoparticle hyperthermia in cancer treatment. Nano Life. doi:10.1142/S1793984410000067

    Google Scholar 

  14. Weber KA, Achenbach LA, Coates JD (2006) Microorganisms pumping iron: anaerobic microbial iron oxidation and reduction. Nat Rev Microbiol 4:752–764. doi:10.1038/nrmicro1490

    Article  CAS  Google Scholar 

  15. Hidouri S, Messaoudi N, Mihoub M, Baccar ZM, Landoulsi A (2015) Development of bio-hybrid material based on Salmonella typhimurium and layered double hydroxides. Afr J Biotechnol 14 (accepted)

  16. Ensibi C, Lahbib K, Mrabet C, Daly Yahia MN (2015) Antioxidant activity of Aplysia depilans ink collected from Bizerte Channel (NE Tunisia). Algerian J Nat Products 3(1):138–145

    Google Scholar 

  17. Mihoub M, El May A, Aloui A, Chatti A, Landoulssi A (2012) Effects of static magnetic fields on growth and membrane lipid composition of Salmonella typhimurium wild-type and dam mutant strains. Int J Food Microbiol 157:259–266. doi:10.1016/j.ijfoodmicro.2012.05.017

    Article  CAS  Google Scholar 

  18. Khazri A, Sellami B, Dellali M, Corcellas C, Eljarrat E, Barceló D, Mahmoudi E (2015) Acute toxicity of cypermethrin on the freshwater mussel Unio gibbus. Ecotoxicol Environ Saf 115:62–66. doi:10.1016/j.ecoenv.2015.01.028

    Article  CAS  Google Scholar 

  19. Aebi H (1974) Catalase. In: Bergmeyer HU (ed) Methods of enzymatic analysis. Academic Press, London, pp 671–684

    Google Scholar 

  20. Ni W, Trelease RN, Eising R (1990) Two temporally synthesized charge subunits interact to form the five isoforms of cottonseed (Gossypium hirsutum) catalase. Biochem J 269:233–238. doi:10.1042/bj2690233

    Article  CAS  Google Scholar 

  21. Pawar HA, D’Mello PM (2011) Spectrophotometric estimation of total polysaccharides in Cassia tora gum. J Appl Pharm Sci 1(3):93–95

    Google Scholar 

  22. Darroudi M, Bin Ahmad M, Halim-Abdullah A, Ibrahim NA (2010) Green synthesis and characterization of gelatin-based and sugar-reduced silver nanoparticles. Int J Nanomed 6:569–574

    Google Scholar 

  23. Mohseniazar M, Barin M, Zarredar H, Alizadeh S, Shanehband D (2011) Potential of microalgae and lactobacilli in biosynthesis of silver nanoparticles. BioImpacts 1(3):149–152

    CAS  Google Scholar 

  24. Kalainila P, Subha V, Ernest Ravindran RS, Renganathan S (2014) Synthesis and characterization of silver nanoparticle from Erythrina indica. Asian J Pharm Clin Res 7(Suppl):2

    Google Scholar 

  25. Wilson PK, Szymanski M, Porter R (2013) Standardisation of metal lo immuno assay protocols for assessment of silver nanoparticle antibody conjugates. J Immunol Methods 387(1–2):303–307

    Article  CAS  Google Scholar 

  26. Okafor F, Janen A, Kukhtareva T, Edwards V, Curley M (2013) Green synthesis of silver nanoparticles, their characterization, application and antibacterial activity. Int J Environ Res Public Health 10:5221–5238

    Article  Google Scholar 

  27. Saware K, Sawle B, Salimath B, Jayanthi K, Abbaraju V (2014) Biosynthesis and characterization of silver nanoparticles using Ficus benghalensis leaf extract. Int J Res Eng Technol 03(05):867–874

    Article  Google Scholar 

  28. Lateef A, Ojo SA, Azeez MA, Asafa TB, Yekeen TA, Akinboro A, Oladipo IC, Gueguim-Kana EB, Beukes LS (2015) Cobweb as novel biomaterial for the green and eco-friendly synthesis of silver nanoparticles. Appl Nanosci. doi:10.1007/s13204-015-0492-9

    Google Scholar 

  29. Banerjee P, Satapathy M, Mukhopahayay A, Das P (2014) Leaf extract mediated green synthesis of silver nanoparticles from widely available Indian plants: synthesis, characterization, antimicrobial property and toxicity analysis. Bioresour Bioprocess 1(3):1–10

    Google Scholar 

  30. Prathna TC, Chandrasekaran N, Raichur AM, Mukherjee A (2011) Biomimetic synthesis of silver nanoparticles by Citrus limon (lemon) aqueous extract and theoretical prediction of particle size. Colloids Surf B 82:152–159

    Article  CAS  Google Scholar 

  31. Mahdi S, Taghdiri M, Makari V, Rahimi-Nasrabadi M (2015) Procedure optimization for green synthesis of silver nanoparticles by aqueous extract of Eucalyptus oleosa. Spectrochim Acta Part A Mol Biomol Spectrosc 136:1249–1254

    Article  Google Scholar 

  32. Gulcin I, Huyut Z, Elmastas M, Aboul-Enein HY (2010) Radical scavenging and antioxidant activity of tannic acid. Arab J Chem 3:43–53. doi:10.1016/j.arabjc.2009.12.008

    Article  CAS  Google Scholar 

  33. Zhang HM, Cao J, Tang BP, Wang YQ (2014) Effect of TiO2 nanoparticles on the structure and activity of catalase. Chem Biol Interact 219:168–174. doi:10.1016/j.cbi.2014.06.005

    Article  CAS  Google Scholar 

Download references

Acknowledgments

Dr. S. Hidouri would like to thank Pr. A. Landoulsi for his acceptance, as a volunteer researcher, in his affiliation to carry out this idea.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Slah Hidouri.

Ethics declarations

Conflict of interest

The authors declare that there is no conflict of interest about the publication of this work.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hidouri, S., Yohmes, M.B. & Landoulsi, A. Contribution of silver nanoparticles to extend Salmonella typhimurium growth under various respiration regimes. Bioprocess Biosyst Eng 39, 1635–1644 (2016). https://doi.org/10.1007/s00449-016-1639-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00449-016-1639-0

Keywords

Navigation