Skip to main content
Log in

Biogenesis of Selenium Nanoparticles Using Green Chemistry

  • Review
  • Published:
Topics in Current Chemistry Aims and scope Submit manuscript

Abstract

Selenium binds some enzymes such as glutathione peroxidase and thioredoxin reductase, which may be activated in biological infections and oxidative stress. Chemical and physical methods for synthesizing nanoparticles, apart from being expensive, have their own particular risks. However, nanoparticle synthesis through green chemistry is a safe procedure that different biological sources such as bacteria, fungi, yeasts, algae and plants can be the catalyst bed for processing. Synthesis of selenium nanoparticles (SeNPs) by macro/microorganisms causes variation in morphology and shape of the particles is due to diversity of reduction enzymes in organisms. Reducing enzymes of microorganisms by changing the status of redox convert metal ions (Se2−) to SeNPs without charge (Se0). Biological activity of SeNPs includes their protective role against DNA oxidation. Because of the biological and industrial properties, SeNPs have wide applications in the fields of medicine, microelectronic, agriculture and animal husbandry. SeNPs can show strong antimicrobial effects on the growth and proliferation of microorganisms in a dose-dependent manner. The objective of this review is to consider SeNPs applications to various organisms.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Meng Z, Li G, Wong H-F, Ng S-M, Yiu S-C, Ho C-L, Leung C-W, Manners I, Wong W-Y (2017) Patterning of L10 FePt nanoparticles with ultra-high coercivity for bit-patterned media. Nanoscale 9:731–738

    Article  CAS  Google Scholar 

  2. Dong Q, Li G, Ho C-L, Leung C-W, Pong P-W-T, Manners I, Wong W-Y (2014) Facile generation of L10-FePt nanodot arrays from a nanopatterned metallopolymer blend of iron and platinum homopolymers. Adv Funct Mater 24(6):857–862

    Article  CAS  Google Scholar 

  3. Dong Q, Qu W, Liang W, Guo K, Xue H, Guo Y, Meng Z, Ho C-L, Leung C-W, Wong W-Y (2016) Metallopolymer precursors to L10-CoPt nanoparticles: synthesis, characterization, nanopatterning and potential application. Nanoscale 8(13):7068–7074

    Article  CAS  Google Scholar 

  4. Dong Q, Tai F, Lian H, Zhao B, Zhong Z, Chen Z, Tang J, Zhu F (2017) Realization of efficient light out-coupling in organic light-emitting diodes with surface carbon-coated magnetic alloy nanoparticles. Nanoscale 9(8):2875–2882

    Article  CAS  Google Scholar 

  5. Dong Q, Qu W, Liang W, Tai F, Guo K, Leung CW, Wong WY (2016) Porphyrin-based metallopolymers: synthesis, characterization and pyrolytic study for the generation of magnetic metal nanoparticles. J Mater Chem C 4(22):5010–5018

    Article  CAS  Google Scholar 

  6. Lanone S, Boczkowski J (2006) Biomedical applications and potential health risks of nanomaterials: molecular mechanisms. Curr Mol Med 6(6):651–663

    Article  CAS  Google Scholar 

  7. Zhanga W, Chena Z, Liua H, Zhangb L, Gaoa P, Li D (2011) Biosynthesis and structural characteristics of selenium nanoparticles by Pseudomonas alcaliphila. Colloids Surf B 88:196–202. https://doi.org/10.1016/j.colsurfb.2011.06.031

    Article  Google Scholar 

  8. Gao X, Zhang J, Zhang L (2002) Hollow sphere selenium nanoparticles: their in vitro anti hydroxyl radical effect. Adv Mater 14:290–293

    Article  CAS  Google Scholar 

  9. Huang B, Zhang J, Hou J, Chen C (2003) Free radical scavenging efficiency of nano-Se in vitro. Free Radic Biol Med 35:805–813

    Article  CAS  Google Scholar 

  10. Dhanjal S, Cameotra SS (2010) Aerobic biogenesis of selenium nanospheres by Bacillus cereus isolated from coalmine soil. Microb Cell Fact 9:52. https://doi.org/10.1186/1475-2859-9-52

    Article  Google Scholar 

  11. El-Batal AI, Thabet NM, Moustafa AO, Abdel Ghaffar ARB, Azab KS (2012) Amelioration of oxidative damage induced in gamma irradiated rats by nano selenium and lovastatin mixture. World Appl Sci 19(7):962–971. https://doi.org/10.5829/idosi.wasj.2012.19.07.2778

    CAS  Google Scholar 

  12. Berggren MM, Mangin JF, Gasdaska JR, Powis G (1999) Effect of selenium on rat thioredoxin reductase activity. Biochem Pharmacol 57(2):187–193

    Article  CAS  Google Scholar 

  13. Kannan N, Subbalaxmi S (2011) Biogenesis of nanoparticles—a current perspective. Rev Adv Mater Sci 27:99–114

    CAS  Google Scholar 

  14. Eszenyi P, Sztrik A, Babka B, Prokisch J (2011) Elemental, nano-sized (100–500 nm) selenium production by probiotic lactic acid bacteria. Int J Biosci Biochem Bioinform 1(2):148–153

    Google Scholar 

  15. Bhattacharya D, Rajinder G (2005) Nanotechnology and potential of microorganisms. Crit Rev Biotechnol 25:199–204

    Article  CAS  Google Scholar 

  16. Thakkar KN, Mhatre SS, Parikh RY (2010) Biological synthesis of metallic nanoparticles. Nanomedicine 6:257–262. https://doi.org/10.1016/j.nano.2009.07.002

    Article  CAS  Google Scholar 

  17. Oremland RS, Blum JS, Culbertson CW, Visscher PT, Miller LG, Dowdle P, Strohmaier FE (1994) Isolation, growth, and metabolism of an obligately anaerobic, selenate-respiring bacterium, strain SES-3. Appl Environ Microbiol 60(8):3011–3019

    CAS  Google Scholar 

  18. Lortie L, Gould WD, Rajan S, McCready RGL, Cheng KJ (1992) Reduction of selenate and selenite to elemental selenium by a Pseudomonas stutzeri isolate. Appl Environ Microbiol 58(12):4042–4044

    CAS  Google Scholar 

  19. Oremland RS, Herbel MJ, Blum JS, Langley S, Beveridge TJ, Ajayan PM, Sutto T, Ellis AV, Curran S (2004) Structural and spectral features of selenium nanospheres produced by Se-respiring bacteria. Appl Environ Microbiol 70(1):52–60

    Article  CAS  Google Scholar 

  20. Srivastava N, Mukhopadhyay M (2013) Biosynthesis and structural characterization of selenium nanoparticles mediated by Zooglea ramigera. Powder Technol 244:26–29. https://doi.org/10.1016/j.powtec.2013.03.050

    Article  CAS  Google Scholar 

  21. Pearce CI, Coker VS, Charnock JM, Pattrick RAD, Mosselmans JFW, Law N, Beveridge TJ, Lloyd JR (2008) Microbial manufacture of chalcogenide-based nanoparticles via the reduction of selenite using Veillonella atypica: an in situ EXAFS study. Nanotechnology 19:155–603. https://doi.org/10.1088/0957-4484/19/15/155603

    Google Scholar 

  22. Bajaj M, Schmidt S, Winter J (2012) Formation of Se (0) Nanoparticles by Duganella sp. and Agrobacterium sp. isolated from Se-laden soil of North-East Punjab, India. Microb Cell Fact 11:A64

    Article  Google Scholar 

  23. Jafari Fesharaki P, Nazari P, Shakibaie M, Rezaie S, Banoee M, Abdollahi M, Shahverdi AR (2010) Biosynthesis of selenium nanoparticles using Klebsiella pneumoniae and their recovery by a simple sterilization process. Braz J Microbiol 41(2):461–466

    Article  Google Scholar 

  24. Sahverdi AR, Fakhimi A, Mosavat G, Jafari-Fesharaki P, Rezaie S, Rezayat SM (2010) Antifungal activity of biogenic selenium nanoparticles. World Appl Sci J 10(8):918–922

    Google Scholar 

  25. Bahri Kazempour Z, Yazdi MH, Rafii F, Shahverdi AR (2013) Sub-inhibitory concentration of biogenic selenium nanoparticles lacks post antifungal effect for Aspergillus niger and Candida albicans and stimulates the growth of Aspergillus niger. Iran J Microbiol 5(1):81–85

    Google Scholar 

  26. Shakibaie M, Khorramizadeh MR, Faramarzi MA, Sabzevari O, Shahverdi AR (2010) Biosynthesis and recovery of selenium nanoparticles and the effects on matrix metalloproteinase-2 expression. Biotechnol Appl. Biochem 56:7–15. https://doi.org/10.1042/BA20100042

    CAS  Google Scholar 

  27. Dwivedi S, AlKhedhairy AA, Ahamed M, Musarrat J (2013) Biomimetic synthesis of selenium nanospheres by bacterial strain JS-11 and its role as a biosensor for nanotoxicity assessment: a novel Se-bioassay. PLoS ONE 8(3):1–10. https://doi.org/10.1371/journal.pone.0057404.g002

    Article  Google Scholar 

  28. Debieuxa CM, Dridgea EJ, Muellera CM, Splatta P, Paszkiewicza K, Knighta I, Florancea H, Lovea J, Titballa RW, Lewisb RJ, Richardsonc DJ, Butler CS (2011) A bacterial process for selenium nanosphere assembly. PNAS 108(33):1–6. https://doi.org/10.1073/pnas.1105959108/-/DCSupplemental

    Google Scholar 

  29. Tam K, Ho CT, Lee J-H, Lai M, Chang CH, Rheem Y, Chen W, Hur H-G, Myung NV (2010) Growh mechanism of amorphous selenium nanoparticles synthesized by Shewanella sp. HN-41. Biosci Biotechnol Biochem 74(4):696–700. https://doi.org/10.1271/bbb.90454

    Article  CAS  Google Scholar 

  30. Lee J-H, Han J, Choi H, Hur H-G (2007) Effects of temperature and dissolved oxygen on Se(IV) removal and Se(0) precipitation by Shewanella sp. HN-41. Chemosphere 68:1898–1905. https://doi.org/10.1016/j.chemosphere.2007.02.062

    Article  CAS  Google Scholar 

  31. Yee N, Ma J, Dalia A, Boonfueng T, Kobayashi DY (2007) Se(VI) reduction and the precipitation of Se(0) by the facultative bacterium Enterobacter cloacae SLD1a-1 are regulated by FNR. Appl Environ Microbiol 73(6):1914–1920. https://doi.org/10.1128/AEM.02542-06

    Article  CAS  Google Scholar 

  32. Youssef GA, El-Aassar SA, Berekaa M, El-Shaer M, Stolz J (2009) Arsenate and selenate reduction by some facultative bacteria in the Nile Delta. Am Eurasian J Agric Environ Sci 5(6):847–855

    CAS  Google Scholar 

  33. Tomei FA, Barton LL, Lemanski CL, Zocco TG (1992) Reduction of selenate and selenite to elemental selenium by Wolinella succinogenes. Can J Microbiol 38:1328–1333

    Article  CAS  Google Scholar 

  34. Yamada A, Miyashita M, Inoue K, Matsunaga T (1997) Extracellular reduction of selenite by a novel marine photosynthetic bacterium. Appl Microbiol Biotechnol 48:367–372

    Article  CAS  Google Scholar 

  35. Khoei NS, Lampis S, Zonaro E, Yrjala K, Bernardi P, Vallini G (2017) Insights into selenite reduction and biogenesis of elemental selenium nanoparticles by two environmental isolates of Burkholderia fungorum. N Biotechnol 34:1–11. https://doi.org/10.1016/j.nbt.2016.10.002

    Article  CAS  Google Scholar 

  36. Shoeibi S, Mashreghi M (2017) Biosynthesis of selenium nanoparticles using Enterococcus faecalis and evaluation of their antibacterial activities. J Trace Elem Med Biol 39:135–139. https://doi.org/10.1016/j.jtemb.2016.09.003

    Article  CAS  Google Scholar 

  37. Xiao X, Zhao C, Yang S, Guo S (2017) Characteristics of nano-selenium synthesized by Se(IV) adsorption and reduction with anoxygenic photosynthetic bacteria. Dig J Nanomater Biostruct 12(1):205–214

    Google Scholar 

  38. Hariharan H, Al-Harbi N, Karuppiah P, Rajaram S (2012) Microbial synthesis of selinium nanocomposite using saccharomyces cerevisiae and its antimicrobial activity against pathogens causing nosocomial infection. Chalcogenide Lett 9(12):509–515

    CAS  Google Scholar 

  39. Sarkar J, Dey P, Saha S, Acharya K (2011) Mycosynthesis of selenium nanoparticles. Micro Nano Lett 6(8):599–602. https://doi.org/10.1049/mnl.2011.0227

    Article  CAS  Google Scholar 

  40. Zare B, Babaie S, Setayesh N, Shahverdi AR (2013) Isolation and characterization of a fungus for extracellular synthesis of small selenium nanoparticles. Nanomedicine 1(1):13–19

    Google Scholar 

  41. Domokos-Szabolcsy E, Marton L, Sztrik A, Babka B, Prokisch J, Fari M (2012) Accumulation of red elemental selenium nanoparticles and their biological effects in Nicotinia tabacum. Plant Growth Regul 68(3):525–531. https://doi.org/10.1007/s10725-012-9735-x

    Article  CAS  Google Scholar 

  42. Li S, Shen Y, Xie A, Yu X, Zhang X, Yang L, Li C (2007) Rapid, room-temperature synthesis of amorphous selenium/protein composites using Capsicum annuum L. extract. Nanotechnology 18(40):1–9. https://doi.org/10.1088/0957-4484/18/40/405101

    CAS  Google Scholar 

  43. Sharma G, Sharma AR, Bhavesh R, Park J, Ganbold B, Nam JS, Lee SS (2014) Biomolecule-mediated synthesis of selenium nanoparticles using dried Vitis vinifera (raisin) extract. Molecules 19(3):2761–2770. https://doi.org/10.3390/molecules19032761

    Article  Google Scholar 

  44. Kapur M, Soni K, Kohli K (2017) Green synthesis of selenium nanoparticles from Broccoli, characterization, application and toxicity. Adv Techn Biol Med 5(1):1–7. https://doi.org/10.4172/2379-1764.1000198

    Article  Google Scholar 

  45. Bansal V, Bharde A, Ramanathan R, Bhargava SK (2012) Inorganic materials using ‘unusual’ microorganisms. Adv Colloid Interface Sci 179–182:150–168. https://doi.org/10.1016/j.cis.2012.06.013

    Article  Google Scholar 

  46. Narasingarao P, Haggblom MM (2007) Identification of anaerobic selenate-respiring bacteria from aquatic sediments. Appl Environ Microbiol 73(11):3519–3527. https://doi.org/10.1128/AEM.02737-06

    Article  CAS  Google Scholar 

  47. Hunter WJ, Manter DK (2008) Bio-reduction of selenite to elemental red selenium by Tetrathiobacter kashmirensis. Curr Microbiol 57(1):83–88. https://doi.org/10.1007/s00284-008-9160-6

    Article  CAS  Google Scholar 

  48. Talebi S, Ramezani F, Ramezani M (2010) Biosynthesis of metal nanoparticles by microorganisms. Nanocon Olomouc Czech Rep EU 10:12–18

    Google Scholar 

  49. Mohanpuria P, Rana NK (2008) Biosynthesis of nanoparticles: technological concepts and future applications. J Nanopart Res 10:507–517

    Article  CAS  Google Scholar 

  50. Galano E, Mangiapane E, Bianga J, Palmese A, Pessione E, Szpunar J, Lobinski R, Amoresano A (2013) Privileged incorporation of selenium as selenocysteine in Lactobacillus reuteri proteins demonstrated by selenium-specific imaging and proteomics. Mol Cell Proteomics 12(8):2196–2204. https://doi.org/10.1074/mcp.M113.027607

    Article  CAS  Google Scholar 

  51. Marinescu G, Stoicescu AG, Teodorof L (2011) Industrial nutrient medium use for yeast selenium preparation. Food Technol 35(1):45–53

    CAS  Google Scholar 

  52. Esmaeili S, Khosravi-Darani K, Pourahmad R, Komeili R (2012) An experimental design for production of selenium-enriched yeast. World Appl Sci J 19(1):31–37. https://doi.org/10.5829/idosi.wasj.2012.19.01.2634

    CAS  Google Scholar 

  53. Hanson BR, Lindblom SD, Loeffler ML, Pilon-Smits EAH (2004) Selenium protects plants from phloem-feeding aphids due to both deterrence and toxicity. New Phytol 162:655–662

    Article  CAS  Google Scholar 

  54. Wangeline AL, Valdez JR, Lindblom SD, Bowling KL, Reeves FB, Pilon-Smits EA (2011) Characterization of rhizosphere fungi from selenium hyperaccumulator and nonhyperaccumulator plants along the eastern Rocky Mountain Front Range. Am J Bot 98(7):1139–1147. https://doi.org/10.3732/ajb.1000369

    Article  Google Scholar 

  55. Poluboyarinov PA, Vikhreva VA, Leshchenko PP, Aripovskii AV, Likhachev AN (2009) Elemental selenium formation upon destruction of the organoselenium compound DAFS-25 molecule by growing fungal mycelium. Moscow Univ Biol Sci Bull 64(4):164–168. https://doi.org/10.3103/s0096392509040075

    Article  Google Scholar 

  56. Shahverdi AR, Shakibaie M, Nazari P (2011) Basic and practical procedures for microbial synthesis of nanoparticles. Metal nanoparticles in microbiology. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-18312-6

    Google Scholar 

  57. Jablonski PP, Anderson JV (1982) Light-dependent reduction of selenite by sonicated pea chloroplasts. Phytochemistry 21(9):2179–2184

    Article  CAS  Google Scholar 

  58. Barnaby S, Sarker N, Dowdell A, Banerjee I (2011) The spontaneous formation of selenium nanoparticles on gallic acid assemblies and their antioxidant properties. Fordham Undergrad Res J 1:41–46

    Google Scholar 

  59. Zhang JS, Gao XY, Zhang LD, Bao YP (2001) Biological effects of a nano red elemental selenium. BioFactors 15:27–38

    Article  Google Scholar 

  60. Albrecht MA, Evans CW, Raston CL (2006) Green chemistry and the health implications of nanoparticles. Green Chem 8:417–432. https://doi.org/10.1039/b517131h

    Article  CAS  Google Scholar 

  61. El-Batal AI, Abou Zaid O, Noaman E, Ismail ES (2012) Promising antitumor activity of fermented wheat germ extract in combination with selenium nanoparticles. Int J Pharm Health Care 2(6):23–47

    Google Scholar 

  62. Ramos JF, Webster TJ (2012) Cytotoxicity of selenium nanoparticles in rat dermal fibroblasts. Int J Nanomed 7:3907–3914. https://doi.org/10.2147/IJN.S33767

    CAS  Google Scholar 

  63. Flohe L (2011) Selenium and human health: snapshots from the frontiers of selenium biomedicine. In: Woollins JD, Laitinen RS (eds) Selenium and tellurium chemistry, vol 12. Springer, Berlin, Heidelberg, pp 285–302. https://doi.org/10.1007/978-3-642-20699-3_12

    Chapter  Google Scholar 

  64. Chen T, Wong Y-S, Zheng W, Bai Y, Huang L (2008) Selenium nanoparticles fabricated in Undaria pinnatifida polysaccharide solutions induce mitochondria-mediated apoptosis in A375 human melanoma cells. Colloids Surf B 67:26–31

    Article  CAS  Google Scholar 

  65. Sun D, Liu Y, Yu Q, Qin X, Yang L, Zhou Y, Chen L, Liu J (2014) Inhibition of tumor growth and vasculature and fluorescence imaging using functionalized ruthenium-thiol protected selenium nanoparticles. Biomaterials 35(5):1572–1583. https://doi.org/10.1016/j.biomaterials.2013.11.007

    Article  CAS  Google Scholar 

  66. Wang Y, Ma J, Zhou L, Chen J, Liu Y, Qiu Z, Zhang S (2012) Dual functional selenium-substituted hydroxyapatite. Interface Focus 2:378–386. https://doi.org/10.1098/rsfs.2012.0002

    Article  Google Scholar 

  67. Zhang S, Luo Y, Zeng H, Wang Q, Tian F, Song J, Cheng WH (2011) Encapsulation of selenium in chitosan nanoparticles improves selenium availability and protects cells from selenium-induced DNA damage response. J Nutr Biochem 22:1137–1142. https://doi.org/10.1016/j.jnutbio.2010.09.014

    Article  Google Scholar 

  68. Ren F, Chen X, Hesketh J, Gan F, Huang K (2012) Selenium promotes T-cell response to TCR-stimulation and ConA, but not PHA in primary porcine splenocytes. PLoS One 7(4):1–10. https://doi.org/10.1371/journal.pone.0035375.g001

    Article  Google Scholar 

  69. Kojouri GA, Sadeghian S, Mohebbi A, Mokhber Dezfouli MR (2012) The effects of oral consumption of selenium nanoparticles on chemotactic and respiratory burst activities of neutrophils in comparison with sodium selenite in sheep. Biol Trace Elem Res 146:160–166. https://doi.org/10.1007/s12011-011-9241-4

    Article  CAS  Google Scholar 

  70. Xu CL, Wang YZ, Jin ML, Yang XQ (2009) Preparation, characterization and immunomodulatory activity of selenium-enriched exopolysaccharide produced by bacterium Enterobacter cloacae Z0206. Bioresour Technol 100:2095–2097. https://doi.org/10.1016/j.biortech.2008.10.037

    Article  CAS  Google Scholar 

  71. Reznik A, Zhao W, Ohkawa Y, Tanioka K, Rowlands JA (2009) Applications of avalanche multiplication in amorphous selenium to flat panel detectors for medical applications. J Mater Sci Mater Electron 20:63–67. https://doi.org/10.1007/s10854-007-9440-0

    Article  CAS  Google Scholar 

  72. Prasad GL (2009) Biomedical applications of nanoparticles. In: Webster TJ (ed) Safety of nanoparticles. vol 5. Springer, New York, pp 89–109. https://doi.org/10.1007/978-0-387-78608-7_5

    Chapter  Google Scholar 

  73. Tian B, Al-Jamal WT, Van den Bossche J, Kostarelos K (2012) Design and engineering of multifunctional quantum dot-based nanoparticles for simultaneous therapeutic-diagnostic applications. In: Svenson S, Prud’homme RK (eds) Multifunctional nanoparticles for drug delivery applications: imaging, targeting, and delivery. vol 16. pp 345–364. https://doi.org/10.1007/978-1-4614-2305-8_16

  74. Li X, Xu H, Chen Z-S, Chen G (2011) Biosynthesis of nanoparticles by microorganisms and their applications. J Nanomater 2011:1–16. https://doi.org/10.1155/2011/270974

    Google Scholar 

  75. Tran PA, Webster TJ (2011) Selenium nanoparticles inhibit Staphylococcus aureus growth. Int J Nanomed 6:1553–1558. https://doi.org/10.2147/IJN.S21729

    CAS  Google Scholar 

  76. Verma P (2017) Minimum biofilm eradication concentration (MBEC) assay of silver and selenium nanoparticles against biofilm forming Staphylococcus aureus. Int J Med Clin Res 5(4):20213–20222. https://doi.org/10.18535/jmscr/v5i4.77

    Google Scholar 

  77. Prateeksha Singh BR, Shoeb M, Sharma S, Naqvi AH, Gupta VK, Singh BN (2017) Scaffold of selenium nanovectors and honey phytochemicals for inhibition of pseudomonas aeruginosa quorum sensing and biofilm formation. Front Cell Infect Microbiol 7:1–14. https://doi.org/10.3389/fcimb.2017.00093

    Article  Google Scholar 

  78. Yazdi MH, Mahdavi M, Setayesh N, Esfandyar M, Shahverdi AR (2013) Selenium nanoparticle-enriched Lactobacillus brevis causes more efficient immune responses in vivo and reduces the liver metastasis in metastatic form of mouse breast cancer. DARU J Pharm Sci 21(1):1–33. https://doi.org/10.1186/2008-2231-21-33

    Article  Google Scholar 

  79. Urik M, Sevc J, Littera P, Kolencik M, Cernansky S (2009) Basic interactions of Aspergillus niger with se(iv). Nova Biotechnol 9(2):141–145

    Google Scholar 

  80. Abdel-Hamid MI, Skulberg OM (1995) Effect of selenium on the growth of some selected green and blue–green algae. Lakes Reserv Res Manag 1:205–211

    Article  Google Scholar 

  81. Umysova D, Vitova M, Douskova I, Bisova K, Hlavova M, Cizkova M, Machat J, Doucha J, Zachleder V (2009) Bioaccumulation and toxicity of selenium compounds in the green alga Scenedesmus quadricauda. BMC Plant Biol 9:58. https://doi.org/10.1186/1471-2229-9-58

    Article  Google Scholar 

  82. Araie H, Shiraiwa Y (2009) Selenium utilization strategy by microalgae. Molecules 14:4880–4891. https://doi.org/10.3390/molecules14124880

    Article  CAS  Google Scholar 

  83. Kumar HD, Prakash G (1971) Toxicity of selenium to the blue-green algae, Anacystis nidulans and Anabaena variabilis. Ann Bot 35:697–705

    Article  CAS  Google Scholar 

  84. Yang F, Tang Q, Zhong X, Bai Y, Chen T, Zhang Y, Li Y, Zheng W (2012) Surface decoration by Spirulina polysaccharide enhances the cellular uptake and anticancer efficacy of selenium nanoparticles. Int J Nanomed 7:835–844. https://doi.org/10.2147/IJN.S28278

    Article  CAS  Google Scholar 

  85. Domokos-Szabolcsy E, Kato M, Zsiros O, Garab GY, Prokisch J, Fari M (2012) Photosynthetic activity changes in tobacco cultures treated by red elemental selenium nanoparticles. In: Paper presented at the Advances in plant breeding and plant biotechnology in central Europe, Debrecen

  86. Rajendran D (2013) Aplication of nano minerales in animal production system. Res J Biotechnol 8(3):1–3

    Article  CAS  Google Scholar 

  87. Zhou X, Wang Y, Gu Q, Li W (2009) Effects of different dietary selenium sources (selenium nanoparticle and selenomethionine) on growth performance, muscle composition and glutathione peroxidase enzyme activity of crucian carp (Carassius auratus gibelio). Aquaculture 291:78–81. https://doi.org/10.1016/j.aquaculture.2009.03.007

    Article  CAS  Google Scholar 

  88. Kojouri GA, Jahanabadi S, Shakibaie M, Ahadi AM, Shahverdi AR (2012) Effect of selenium supplementation with sodium selenite and selenium nanoparticles on iron homeostasis and transferrin gene expression in sheep: a preliminary study. Res Vet Sci 93:275–278. https://doi.org/10.1016/j.rvsc.2011.07.029

    Article  CAS  Google Scholar 

  89. Petrera F, Calamari L, Bertin G (2009) Effect of either sodium selenite or Se–yeast supplementation on selenium status and milk characteristics in dairy goats. Small Rumin Res 82:130–138. https://doi.org/10.1016/j.smallrumres.2009.02.008

    Article  Google Scholar 

  90. Ortman K, Pehrson B (1998) Selenite and selenium yeast as feed supplements to growing fattening pigs. J Vet Med A 45:551–557

    Article  CAS  Google Scholar 

  91. Schrauzer GN (2006) Selenium yeast: composition, quality, analysis, and safety. Pure Appl Chem 78(1):105–109. https://doi.org/10.1351/pac200678010105

    Article  CAS  Google Scholar 

  92. Aguilar F, Autrup H, Barlow S, Castle L, Crebelli R, Dekant W, Engel KH, Gontard N, Gott D, Grilli S, Gürtler R, Larsen J-C, Leclercq C, Leblanc J-C, Malcata FX, Mennes W, Milana MR, Pratt I, Rietjens I, Tobback P, Toldrá F (2008) Selenium-enriched yeast as source for selenium added for nutritional purposes in foods for particular nutritional uses and foods (including food supplements) for the general population. EFSA J 766:1–42

    Google Scholar 

  93. Lasagna-Reeves C, Gonzalez-Romero D, Barria MA, Olmedo I, Clos A, Sadagopa Ramanujam VM, Urayama A, Vergara L, Kogan MJ, Soto C (2010) Bioaccumulation and toxicity of gold nanoparticles after repeated administration in mice. Biochem Biophys Res Commun 393(4):649–655. https://doi.org/10.1016/j.bbrc.2010.02.046

    Article  CAS  Google Scholar 

  94. Prasad T, Arora SP (1991) Influence of different sources of injected selenium on certain enzymes, glutathione and adenosyl methionine concentration in buffalo (Bubalus bubalis) calves. Br J Nutr 66(2):261–267

    Article  CAS  Google Scholar 

  95. Shamsudeen P, Shrivastava HP, Ramsingh P, Krupakaran R (2013) In vitro effect of selenium on fungal biomass and aflatoxin production by Aspergillus parasiticus. Indian J Fundam Appl Life Sci 3(2):91–95

    Google Scholar 

Download references

Acknowledgements

We wish to thank from Drs. Darroudi and Oskouyi for their encouragement for writing this review.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sara Shoeibi.

Ethics declarations

Conflicts of interest

The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shoeibi, S., Mozdziak, P. & Golkar-Narenji, A. Biogenesis of Selenium Nanoparticles Using Green Chemistry. Top Curr Chem (Z) 375, 88 (2017). https://doi.org/10.1007/s41061-017-0176-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s41061-017-0176-x

Keywords

Navigation