Skip to main content
Log in

Novel immobilization process of a thermophilic catalase: efficient purification by heat treatment and subsequent immobilization at high temperature

  • Original Paper
  • Published:
Bioprocess and Biosystems Engineering Aims and scope Submit manuscript

Abstract

The main goal of the present work is to investigate a novel process of purification and immobilization of a thermophilic catalase at high temperatures. The catalase, originated from Bacillus sp., was overexpressed in a recombinant Escherichia coli BL21(DE3)/pET28-CATHis and efficiently purified by heat treatment, achieving a threefold purification. The purified catalase was then immobilized onto an epoxy support at different temperatures (25, 40, and 55 °C). The immobilizate obtained at higher temperatures reached its maximum activity in a shorter time than that obtained at lower temperatures. Furthermore, immobilization at higher temperatures required a lower ionic strength than immobilization at lower temperatures. The characteristics of immobilized enzymes prepared at different temperatures were investigated. The high-temperature immobilizate (55 °C) showed the highest thermal stability, followed by the 40 °C immobilizate. And the high-temperature immobilizate (55 °C) had slightly higher operational stability than the 25 °C immobilizate. All of the immobilized catalase preparations showed higher stability than the free enzyme at alkaline pH 10.0, while the alkali resistance of the 25 °C immobilizate was slightly better than that of the 40 and 55 °C immobilizates.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Chelikani P, Fita I, Loewen PC (2004) Diversity of structures and properties among catalases. Cell Mol Life Sci 61:192–208

    Article  CAS  Google Scholar 

  2. Hernandez K, Berenguer-Murcia A, Rodrigues RC, Fernandez-Lafuente R (2012) Hydrogen peroxide in biocatalysis. A dangerous liaison. Curr Org Chem 16:2652–2672

    Article  CAS  Google Scholar 

  3. Shamsipur M, Asgari M, Maragheh M, Moosavi-Movahedi A (2012) A novel impedimetric nanobiosensor for low level determination of hydrogen peroxide based on biocatalysis of catalase. Bioelectrochemistry 83:31–37

    Article  Google Scholar 

  4. Plumeré N, Henig J, Campbell WH (2012) O2 removal system for electrochemical analysis under ambient air: application in an amperometric nitrate biosensor. Anal Chem 84:2141–2146

    Article  Google Scholar 

  5. Soares JC, Moreira PR, Queiroga AC, Morgado J, Malcata FX, Pintado ME (2011) Application of immobilized enzyme technologies for the textile industry: a review. Biocatal Biotransfor 29:223–237

    CAS  Google Scholar 

  6. Gu JS, Wang YX (2009) PolySOD-catalase as a therapeutic agent with antioxidant properties. Pharm Biol 47:620–623

    Article  CAS  Google Scholar 

  7. Wang L, Wang JX, Zhou FM (2004) Direct electrochemistry of catalase at a gold electrode modified with single-wall carbon nanotubes. Electroanal 16:627–632

    Article  CAS  Google Scholar 

  8. Luo H, Zhou Y, Chang YH, Xiong L, Liu LZ (2012) Rapid gene cloning, overexpression and characterization of a thermophilic catalase in E. coli. Adv Mater Res 365:367–374

    Article  CAS  Google Scholar 

  9. Loprasert S, Negoro S, Okada H (1988) Thermostable peroxidase from Bacillus stearothermophilus. J Gen Microbiol 134:1971–1976

    CAS  Google Scholar 

  10. Patchett ML, Neal TL, Schofield LR, Strange RC, Daniel RM, Morgan HW (1989) Heat treatment purification of thermostable cellulase and hemicellulase enzymes expressed in E. coli. Enzyme Microb Tech 11:113–115

    Article  CAS  Google Scholar 

  11. Pessela BCC, Torres R, Fuentes M, Mateo C, Filho M, Carrascosa AV, Vian A, Garcia JL, Guisan JM, Fernandez-Lafuente R (2004) A simple strategy for the purification of large thermophilic proteins overexpressed in mesophilic microorganisms: application to multimeric enzymes from Thermus sp. strain T2 expressed in Escherichia coli. Biotechnol Progr 20:1507–1511

    Article  CAS  Google Scholar 

  12. Rocha-Martin J, Vega DE, Cabrera Z, Bolivar JM, Fernandez-Lafuente R, Berenguer J, Guisan JM (2009) Purification, immobilization and stabilization of a highly enantioselective alcohol dehydrogenase from Thermus thermophilus HB27 cloned in E. coli. Process Biochem 44:1004–1012

    Article  CAS  Google Scholar 

  13. Fernandez-Lafuente R (2009) Stabilization of multimeric enzymes: strategies to prevent subunit dissociation. Enzyme Microb Tech 45:405–418

    Article  CAS  Google Scholar 

  14. Tischer W, Wedekind F (1999) Immobilized enzymes: methods and applications. In: Fessner WD, Demirjian DC (eds) Biocatalysis-from discovery to application. Springer-Publishing Inc, Berlin, pp 95–126

    Chapter  Google Scholar 

  15. Alptekin O, Tukel SS, Yildirim D, Alagoz D (2010) Immobilization of catalase onto Eupergit C and its characterization. J Mol Catal B-Enzym 64:177–183

    Article  CAS  Google Scholar 

  16. Mateo C, Palomo JM, Fernandez-Lorente G, Guisan JM, Fernandez-Lafuente R (2007) Improvement of enzyme activity, stability and selectivity via immobilization techniques. Enzyme Microb Tech 40:1451–1463

    Article  CAS  Google Scholar 

  17. Mateo C, Grazú V, Pessela BCC, Montes T, Palomo JM, Torres R, López-Gallego F, Fernández-Lafuente R, Guisán JM (2007) Advances in the design of new epoxy supports for enzyme immobilization-stabilization. Biochem Soc T 35:1593–1601

    Article  CAS  Google Scholar 

  18. Wheatley JB, Schmidt DE Jr (1999) Salt-induced immobilization of affinity ligands onto epoxide-activated supports. J Chromatogr A 849:1–12

    Article  CAS  Google Scholar 

  19. Bauer-Arnaz K, Napolitano EW, Roberts DN, Montali JA, Hughes BR, Schmidt DE Jr (1998) Salt-induced immobilization of small affinity ligands on an epoxide-activated affinity support. J Chromatogr A 803:73–82

    Article  CAS  Google Scholar 

  20. Wheatley JB, Schmidt DE Jr (1993) Salt-induced immobilization of proteins on a high-performance liquid chromatographic epoxide affinity support. J Chromatogr A 644:11–16

    Article  CAS  Google Scholar 

  21. Melander WR, Corradini D, Cs Horváth (1984) Salt-mediated retention of proteins in hydrophobic-interaction chromatography: application of solvophobic theory. J Chromatogr A 317:67–85

    Article  CAS  Google Scholar 

  22. Smalla K, Turkova J, Coupek J, Hermann P (1988) Influence of salts on the covalent immobilization of proteins to modified copolymers of 2-hydroxyethyl methacrylate with ethylene dimethacrylate. Biotechnol Appl Biochem 10:21–31

    CAS  Google Scholar 

  23. Moskovitz Y, Srebnik S (2005) Mean-field model of immobilized enzymes embedded in a grafted polymer layer. Biophys J 89:22–31

    Article  CAS  Google Scholar 

  24. Mateo C, Abian O, Fernandez-Lafuente R, Guisan JM (2000) Increase in conformational stability of enzymes immobilized on epoxy-activated supports by favoring additional multipoint covalent attachment. Enzyme Microb Tech 26:509–515

    Article  CAS  Google Scholar 

  25. Brena B, González-Pombo P, Batista-Viera F (2013) Immobilization of enzymes: a literature survey. Methods Mol Biol 1051:15–31

    Article  CAS  Google Scholar 

  26. Rodrigues RC, Ortiz C, Berenguer-Murcia Á, Torres R, Fernandez-Lafuente R (2013) Modifying enzyme activity and selectivity by immobilization. Chem Soc Rev 42:6290–6307

    Article  CAS  Google Scholar 

  27. Haki GD, Rakshit SK (2003) Developments in industrially important thermostable enzymes: a review. Bioresour Technol 89:17–34

    Article  CAS  Google Scholar 

  28. Van Den Burg B (2003) Extremophiles as a source for novel enzymes. Curr Opin Microbiol 6:213–218

    Article  Google Scholar 

  29. Cowan DA, Fernandez-Lafuente R (2011) Enhancing the functional properties of thermophilic enzymes by chemical modification and immobilization. Enzyme Microb Tech 49:326–346

    Article  CAS  Google Scholar 

  30. Mateo C, Palomo JM, Fuentes M, Betancor L, Grazu V, López-Gallego F, Pessela BC, Hidalgo A, Fernández-Lorente G, Fernández-Lafuente R (2006) Glyoxyl agarose: a fully inert and hydrophilic support for immobilization and high stabilization of proteins. Enzyme Microb Tech 39:274–280

    Article  CAS  Google Scholar 

  31. Smith PK, Krohn RI, Hermanson GT, Mallia AK, Gartner FH, Provenzano MD, Fujimoto EK, Goeke NM, Olson BJ, Klenk DC (1985) Measurement of protein using bicinchoninic acid. Anal Biochem 150:76–85

    Article  CAS  Google Scholar 

  32. Laemmli UK (1970) Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 277:680–685

    Article  Google Scholar 

  33. Beers RF Jr, Sizer IW (1952) A spectrophotometric method for measuring the breakdown of hydrogen peroxide by catalase. J Biol Chem 195:133–140

    CAS  Google Scholar 

  34. Kobayashi C, Suga Y, Yamamoto K, Yomo T, Ogasahara K, Yutani K, Urabe I (1997) Thermal conversion from low- to high-activity forms of catalase I from Bacillus stearothermophilus. J Biol Chem 272:23011–23016

    Article  CAS  Google Scholar 

  35. Falcicchio P, Levisson M, Kengen SWM, Koutsopoulos S (2014) (Hyper)thermophilic enzymes: production and purification. Methods Mol Biol 1129:487–496

    Article  CAS  Google Scholar 

  36. Mateo C, Abian O, Bernedo M, Cuenca E, Fuentes M, Fernandez-Lorente G et al (2005) Some special features of glyoxyl supports to immobilize proteins. Enzyme Microb Tech 37:456–462

    Article  CAS  Google Scholar 

  37. Blanco RM, Calvete JJ, Guisán JM (1989) Immobilization-stabilization of enzymes; variables that control the intensity of the trypsin (amine)-agarose (aldehyde) multipoint attachment. Enzyme Microb Tech 11:353–359

    Article  CAS  Google Scholar 

  38. Mateo C, Abian O, Fernández-Lorente G, Pedroche J, Fernández-Lafuente R, Guisan JM (2002) Epoxy sepabeads: a novel epoxy support for stabilization of industrial enzymes via very intense multipoint covalent attachment. Biotechnol Progr 18:629–634

    Article  CAS  Google Scholar 

  39. Barbosa O, Ortiz C, Berenguer-Murcia Á, Torres R, Rodrigues RC, Fernandez-Lafuente R (2014) Glutaraldehyde in bio-catalysts design: a useful crosslinker and a versatile tool in enzyme immobilization. RSC Adv 4:1583–1600

    Article  CAS  Google Scholar 

  40. Lopez CF, Darst RK, Rossky PJ (2008) Mechanistic elements of protein cold denaturation. J Phys Chem B 112:5961–5967

    Article  CAS  Google Scholar 

  41. Dias CL, Ala-Nissila T, Karttunen M, Vattulainen I, Grant M (2008) Microscopic mechanism for cold denaturation. Phys Rev Lett 100:118101

    Article  Google Scholar 

  42. Dias CL, Ala-Nissila T, Wong-ekkabut J, Vattulainen I, Grant M, Karttunen M (2010) The hydrophobic effect and its role in cold denaturation. Cryobiology 60:91–99

    Article  CAS  Google Scholar 

  43. Bommarius AS, Paye MF (2013) Stabilizing biocatalysts. Chem Soc Rev 42:6534–6565

    Article  CAS  Google Scholar 

  44. Bolivar JM, Rocha-Martin J, Mateo C, Cava F, Berenguer J, Fernandez-Lafuente R, Guisan JM (2009) Coating of soluble and immobilized enzymes with ionic polymers: full stabilization of the quaternary structure of multimeric enzymes. Biomacromolecules 10:742–747

    Article  CAS  Google Scholar 

  45. Bolivar JM, Hidalgo A, Sánchez-Ruiloba L, Berenguer J, Guisán JM, López-Gallego F (2011) Modulation of the distribution of small proteins within porous matrixes by smart-control of the immobilization rate. J Biotechnol 155:412–420

    Article  CAS  Google Scholar 

  46. Torres R, Mateo C, Fuentes M, Palomo JM, Ortiz C, Fernández-Lafuente R, Guisan JM (2002) Reversible immobilization of invertase on Sepabeads coated with polyethyleneimine: optimization of the biocatalyst’s stability. Biotechnol Progr 18:1221–1226

    Article  CAS  Google Scholar 

  47. Ellis RJ (2001) Macromolecular crowding: an important but neglected aspect of the intracellular environment. Curr Opin Struct Biol 11:114–119

    Article  CAS  Google Scholar 

  48. Senthilkumar M, Gnanapragasam G, Arutchelvan V, Nagarajan S (2011) Treatment of textile dyeing wastewater using two-phase pilot plant UASB reactor with sago wastewater as co-substrate. Chem Eng J 166:10–14

    Article  CAS  Google Scholar 

  49. Wilson L, Illanes A, Romero O (2013) Effect of inactivation and reactivation conditions on activity recovery of enzyme catalysts. Electron J Biotechn 16:15

    Google Scholar 

  50. Torres-Salas P, Del Monte-Martinez A, Cutiño-Avila B, Rodriguez-Colinas B, Alcalde M, Ballesteros AO, Plou FJ (2011) Immobilized Biocatalysts: novel Approaches and Tools for Binding Enzymes to Supports. Adv Mater 23:5275–5282

    Article  CAS  Google Scholar 

  51. Hough DW, Danson MJ (1999) Extremozymes. Curr Opin Chem Biol 3:39–46

    Article  CAS  Google Scholar 

  52. Daniel RM, Danson MJ (2013) Temperature and the catalytic activity of enzymes: a fresh understanding. FEBS Lett 587:2738–2743

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by the National Science Foundation of China (21276023; 21476025), Beijing Natural Science Foundation (2143041), and the Fundamental Research Funds for the Central Universities of China (FRF-BR-11-002A; FRF-SD-12-007A). The authors thank Sunresin New Materials Co., Ltd. for the kind gift of LX-1000EPC4 support. The authors have no conflict of interest to declare.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Hui Luo or Yanhong Chang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xu, J., Luo, H., López, C. et al. Novel immobilization process of a thermophilic catalase: efficient purification by heat treatment and subsequent immobilization at high temperature. Bioprocess Biosyst Eng 38, 1983–1991 (2015). https://doi.org/10.1007/s00449-015-1439-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00449-015-1439-y

Keywords

Navigation