Skip to main content

Advertisement

Log in

Biological capacitance studies of anodes in microbial fuel cells using electrochemical impedance spectroscopy

  • Original Paper
  • Published:
Bioprocess and Biosystems Engineering Aims and scope Submit manuscript

Abstract

It is known that cell potential increases while anode resistance decreases during the start-up of microbial fuel cells (MFCs). Biological capacitance, defined as the apparent capacitance attributed to biological activity including biofilm production, plays a role in this phenomenon. In this research, electrochemical impedance spectroscopy was employed to study anode capacitance and resistance during the start-up period of MFCs so that the role of biological capacitance was revealed in electricity generation by MFCs. It was observed that the anode capacitance ranged from 3.29 to 120 mF which increased by 16.8 % to 18–20 times over 10–12 days. Notably, lowering the temperature and arresting biological activity via fixation by 4 % para formaldehyde resulted in the decrease of biological capacitance by 16.9 and 62.6 %, indicating a negative correlation between anode capacitance and anode resistance of MFCs. Thus, biological capacitance of anode should play an important role in power generation by MFCs. We suggest that MFCs are not only biological reactors and/or electrochemical cells, but also biological capacitors, extending the vision on mechanism exploration of electron transfer, reactor structure design and electrode materials development of MFCs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Ha PT, Lee TK, Rittmann BE, Park J, Chang IS (2012) Treatment of alcohol distillery wastewater using a Bacteroidetes-dominant thermophilic microbial fuel cell. Environ Sci Technol 46(5):3022–3030

    Article  CAS  Google Scholar 

  2. Werner CM, Logan BE, Saikaly PE, Amy GL (2013) Wastewater treatment, energy recovery and desalination using a forward osmosis membrane in an air-cathode microbial osmotic fuel cell. J Membrane Sci 428:116–122

    Article  CAS  Google Scholar 

  3. Clauwaert P, Aelterman P, Pham TH, De Schamphelaire L, Carballa M, Rabaey K, Verstraete W (2008) Minimizing losses in bio-electrochemical systems: the road to applications. Appl Microbiol Biot 79(6):901–913

    Article  CAS  Google Scholar 

  4. Rismani-Yazdi H, Carver SM, Christy AD, Tuovinen OH (2008) Cathodic limitations in microbial fuel cells: an overview. J Power Sources 180(2):683–694

    Article  CAS  Google Scholar 

  5. Manohar AK, Mansfeld F (2009) The internal resistance of a microbial fuel cell and its dependence on cell design and operating conditions. Electrochim Acta 54(6):1664–1670

    Article  CAS  Google Scholar 

  6. Ha PT, Moon H, Kim BH, Ng HY, Chang IS (2010) Determination of charge transfer resistance and capacitance of microbial fuel cell through a transient response analysis of cell voltage. Biosens Bioelectron 25(7):1629–1634

    Article  CAS  Google Scholar 

  7. Logan BE, Hamelers B, Rozendal R, Schröder U, Keller J, Freguia S, Aelterman P, Verstraete W, Rabaey K (2006) Microbial fuel cells: methodology and technology. Environ Sci Technol 40(17):5181–5192

    Article  CAS  Google Scholar 

  8. Ciureanu M, Roberge R (2001) Electrochemical impedance study of PEM fuel cells. Experimental diagnostics and modeling of air cathodes. J Phys Chem B 105(17):3531–3539

    Article  CAS  Google Scholar 

  9. He Z, Mansfeld F (2009) Exploring the use of electrochemical impedance spectroscopy (EIS) in microbial fuel cell studies. Energ Environ Sci 2(2):215–219

    Article  CAS  Google Scholar 

  10. Srikanth S, Marsili E, Flickinger MC, Bond DR (2008) Electrochemical characterization of Geobacter sulfurreducens cells immobilized on graphite paper electrodes. Biotechnol Bioeng 99(5):1065–1073

    Article  CAS  Google Scholar 

  11. Ramasamy RP, Ren Z, Mench MM, Regan JM (2008) Impact of initial biofilm growth on the anode impedance of microbial fuel cells. Biotechnol Bioeng 101(1):101–108

    Article  CAS  Google Scholar 

  12. Jung S, Mench MM, Regan JM (2011) Impedance characteristics and polarization behavior of a microbial fuel cell in response to short-term changes in medium pH. Environ Sci Technol 45(20):9069–9074

    Article  CAS  Google Scholar 

  13. Ramasamy RP, Gadhamshetty V, Nadeau LJ, Johnson GR (2009) Impedance spectroscopy as a tool for non-intrusive detection of extracellular mediators in microbial fuel cells. Biotechnol Bioeng 104(5):882–891

    Article  CAS  Google Scholar 

  14. Yong YC, Dong XC, Chan-Park MB, Song H, Chen P (2012) Macroporous and monolithic anode based on polyaniline hybridized three-dimensional graphene for high-performance microbial fuel cells. ACS Nano 6(3):2394–2400

    Article  CAS  Google Scholar 

  15. Yong YC, Yu YY, Zhang X, Song H (2014) Highly active bidirectional electron transfer by a self-assembled electroactive reduced-graphene-oxide-hybridized biofilm. Angew Chem Int Edit 53(17):4480–4483

    Article  CAS  Google Scholar 

  16. He Z, Wagner N, Minteer SD, Angenent LT (2006) An upflow microbial fuel cell with an interior cathode: assessment of the internal resistance by impedance spectroscopy. Environ Sci Technol 40(17):5212–5217

    Article  CAS  Google Scholar 

  17. O’Hayre R, Cha SW, Colella W, Prinz FB (2006) Fuel cell fundamentals. Wiley, New york

    Google Scholar 

  18. Manohar AK, Bretschger O, Nealson KH, Mansfeld F (2008) The use of electrochemical impedance spectroscopy (EIS) in the evaluation of the electrochemical properties of a microbial fuel cell. Bioelectrochemistry 72(2):149–154

    Article  CAS  Google Scholar 

  19. Kim JR, Premier GC, Hawkes FR, Dinsdale RM, Guwy AJ (2009) Development of a tubular microbial fuel cell (MFC) employing a membrane electrode assembly cathode. J Power Sour 187(2):393–399

    Article  CAS  Google Scholar 

  20. Min B, Cheng S, Logan BE (2005) Electricity generation using membrane and salt bridge microbial fuel cells. Water Res 39(9):1675–1686

    Article  CAS  Google Scholar 

  21. Navarro A, del Rio C, Acosta JL (2009) Pore-filling electrolyte membranes based on plasma-activated microporous PE matrices and sulfonated hydrogenated styrene butadiene block copolymer (SHSBS): single cell test and impedance spectroscopy in symmetrical mode. Solid State Ionics 180(32):1505–1510

    Article  CAS  Google Scholar 

  22. Liang P, Wu W, Wei J (2011) Alternate charging and discharging of capacitor to enhance the electron production of bioelectrochemical systems. Environ Sci Technol 45(15):6647–6653

    Article  CAS  Google Scholar 

  23. Borole AP, Aaron D, Hamilton CY, Tsouris C (2010) Understanding long-term changes in microbial fuel cell performance using electrochemical impedance spectroscopy. Environ Sci Technol 44(7):2740–2745

    Article  CAS  Google Scholar 

  24. You S, Zhao Q, Zhang J, Liu H, Jiang J, Zhao S (2008) Increased sustainable electricity generation in up-flow air-cathode microbial fuel cells. Biosens Bioelectron 23(7):1157–1160

    Article  CAS  Google Scholar 

  25. Dhirde AM, Dale NV, Salehfar H, Mann MD, Han TH (2010) Equivalent electric circuit modeling and performance analysis of a PEM fuel cell stack using impedance spectroscopy. IEEE T Energy Conver 25(3):778–786

    Article  Google Scholar 

  26. Kim T, Kang J, Lee JH (2011) Influence of attached bacteria and biofilm on double-layer capacitance during biofilm monitoring by electrochemical impedance spectroscopy. Water Res 45(15):4615–4622

    Article  CAS  Google Scholar 

  27. Uría N, Muñoz Berbel X, Sánchez O, Muñoz FX, Mas J (2011) Transient storage of electrical charge in biofilms of Shewanella oneidensis MR-1 growing in a microbial fuel cell. Environ Sci Technol 45(23):10250–10256

    Article  Google Scholar 

  28. Ha PT, Moon H, Kim BH, Ng HY, Chang IS (2010) Determination of charge transfer resistance and capacitance of microbial fuel cell through a transient response analysis of cell voltage. Biosens Bioelectron 25(7):1629–1634

    Article  CAS  Google Scholar 

  29. Rabaey K, Ossieur W, Verhaege M, Verstraete W (2005) Continuous microbial fuel cells convert carbohydrates to electricity. Water Sci Technol 52(1):515–523

    CAS  Google Scholar 

  30. Rabaey K, Van de Sompel K, Maignien L, Boon N, Aelterman P, Clauwaert P, De Schamphelaire L, Pham HT, Vermeulen J, Verhaege M, Lens P, Verstraete W (2006) Microbial fuel cells for sulfide removal. Environ Sci Technol 40(17):5218–5224

    Article  CAS  Google Scholar 

  31. Gentet LJ, Stuart GJ, Clements JD (2000) Direct measurement of specific membrane capacitance in neurons. Biophys J 79(1):314–320

    Article  CAS  Google Scholar 

  32. Asami K (2002) Characterization of biological cells by dielectric spectroscopy. J Non-Crystal Solids 305(1):268–277

    Article  CAS  Google Scholar 

  33. Hernandez ME, Newman DK (2001) Extracellular electron transfer. Cell Mol Life Sci 58(11):1562–1571

    Article  CAS  Google Scholar 

  34. Tremblay PL, Summers ZM, Glaven RH, Nevin KP, Zengler K, Barrett CL, Qiu Y, Palsson BO, Lovley DR (2011) A c-type cytochrome and a transcriptional regulator responsible for enhanced extracellular electron transfer in Geobacter sulfurreducens revealed by adaptive evolution. Environ Microbiol 13(1):13–23

    Article  CAS  Google Scholar 

  35. Strycharz-Glaven SM, Snider RM, Guiseppi-Elie A, Tender LM (2011) On the electrical conductivity of microbial nanowires and biofilms. Energ Environ Sci 4(11):4366–4379

    Article  CAS  Google Scholar 

  36. Yang Y, Xu M, Guo J, Sun G (2012) Bacterial extracellular electron transfer in bioelectrochemical systems. Process Biochem 47(12):1707–1714

    Article  CAS  Google Scholar 

  37. Peng X, Yu H, Yu H, Wang X (2013) Lack of anodic capacitance causes power overshoot in microbial fuel cells. Bioresource Technol 138:353–358

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This research is supported by the National Natural Science Foundation of China (NSFC) (20906026), Shanghai Pujiang Program (09PJ1402900), the Fundamental Research Funds for the Central Universities (WB0914036) and the Scientific Research Foundation for the Returned Overseas Chinese Scholars, State Education Ministry (B200-C-0904).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lehua Zhang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lu, Z., Girguis, P., Liang, P. et al. Biological capacitance studies of anodes in microbial fuel cells using electrochemical impedance spectroscopy. Bioprocess Biosyst Eng 38, 1325–1333 (2015). https://doi.org/10.1007/s00449-015-1373-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00449-015-1373-z

Keywords

Navigation