Skip to main content

Electrochemical Losses and Its Role in Power Generation of Microbial Fuel Cells

  • Chapter
  • First Online:
Bioelectrochemical Systems

Abstract

Microbial fuel cells (MFC) is an emergent source of renewable energy technology, where the microbes are incorporated in an electrochemical system with organic loads, for controlled production of electricity from wastewater due to the catalytic action of anode respiring microbes under the anaerobic condition. Considering the redox potential of electrochemical reactions, MFC with oxygen as terminal electron acceptor is capable to produce the potential of 1.2 V theoretically However, in real practice, the obtained voltage from MFC is too low s(500–650 mV) due to various electrochemical losses encountered in the MFC, which further affects the power density. The state of the art review focused in this chapter is on the electrochemical losses related hurdles and its role in power generation in the MFCs, which is limiting this technology to be adopted widely and considerably efficient. Though the power production from MFC is being impelled by various governing aspects such as the selection of microbial strains, substrate conditions, electrodes materials, and operating conditions, researchers have attempted various studies to overcome the electrochemical losses thus making MFCs ideal for real-time applications.

Initially, core fundamentals of electrochemistry associated with MFCs are discussed along with the concepts of electrochemical losses and its various possible forms, which edges the performance of MFCs with reduced output in much elaborate manner. Secondly, the concepts of electrochemical overpotential, power generation, different techniques for estimating the electrochemical losses along with the possible affecting factors, and strategies to reduce it are presented. The current perspectives and outlook of research studies focused on to overcome the challenges with the electrochemical losses are also presented.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Aelterman, P., Rabaey, K., Pham, H.T., Boon, N., & Verstraete, W. (2006). Continuous electricity generation at high voltages and currents using stacked microbial fuel cells. Communications in Agricultural and Applied Biological Sciences, 71, 63–66.

    Google Scholar 

  • Aelterman, P., Versichele, M., Marzorati, M., Boon, N., & Verstraete, W. (2008). Loading rate and external resistance control the electricity generation of microbial fuel cells with different three-dimensional anodes. Bioresource Technology, 99, 8895–8902. https://doi.org/10.1016/J.Biortech.2008.04.061

  • Albery, W. J., Hitchman, M. L., & Ulstrup, J. (1969). Ring-disc electrodes. part 10. - Application to second-order kinetics. Transactions of the Faraday Society, 65, 1101–1112. https://doi.org/10.1039/TF9696501101

    Article  CAS  Google Scholar 

  • Babauta, J. T., Nguyen, H. D., & Beyenal, H. (2011). Redox and pH microenvironments within Shewanella oneidensis MR-1 biofilms reveal an electron transfer mechanism. Environmental Science & Technology, 45, 6654–6660. https://doi.org/10.1021/Es200865u

    Article  CAS  Google Scholar 

  • Bhunia, P., & Dutta, K. (2018). Biochemistry and electrochemistry at the electrodes of microbial fuel cells. London: Elsevier.

    Book  Google Scholar 

  • Boghani, H. C., Dinsdale, R. M., Guwy, A. J., & Premier, G. C. (2017). Sampled-time control of a microbial fuel cell stack. Journal of Power Sources, 356, 338–347. https://doi.org/10.1016/J.Jpowsour.2017.03.118

    Article  CAS  Google Scholar 

  • Boghani, H. C., Michie, I., Dinsdale, R. M., Guwy, A. J., & Premier, G. C. (2016). Control of microbial fuel cell voltage using a gain scheduling control strategy. Journal of Power Sources, 322, 106–115. https://doi.org/10.1016/J.Jpowsour.2016.05.017

  • Boghani, H. C., Papaharalabos, G., Michie, I., Fradler, K. R., Dinsdale, R. M., Guwy, A. J. et al. (2014). Controlling for peak power extraction from microbial fuel cells can increase stack voltage and avoid cell reversal. Journal of Power Sources, 269, 363–369. https://doi.org/10.1016/J.Jpowsour.2014.06.059

  • Bond, D. R., & Lovely, D. R. (2003). Voltage reversal during microbial fuel cell stack operation. Applied and Environmental Microbiology, 69, 1548–1555. https://doi.org/10.1128/AEM.69.3.1548

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Butler, C. S., & Nerenberg, R. (2010). Performance and microbial ecology of air-cathode microbial fuel cells with layered electrode assemblies. Applied Microbiology and Biotechnology, 86, 1399–1408. https://doi.org/10.1007/S00253-009-2421-X

    Article  CAS  PubMed  Google Scholar 

  • Chen, S., & Kucernak, A. (2004). Electrocatalysis under conditions of high mass transport: investigation of hydrogen oxidation on single submicron Pt particles supported on carbon. The Journal of Physical Chemistry. B, 108, 13984–13994. https://doi.org/10.1021/Jp048641u

    Article  CAS  Google Scholar 

  • Cheng, S., Liu, H., & Logan, B. E. (2006). Increased performance of single-chamber microbial fuel cells using an improved cathode structure. Electrochemistry Communications, 8, 489–494. https://doi.org/10.1016/J.Elecom.2006.01.010

    Article  CAS  Google Scholar 

  • Clauwaert, P., Aelterman, P., Pham, T. H., De Schamphelaire, L., Carballa, M., Rabaey, K. et al. (2008). Minimizing losses in bio-electrochemical systems: The road to applications. Applied Microbiology and Biotechnology, 79, 901–913. https://doi.org/10.1007/S00253-008-1522-2

  • Das, S., & Mangwani, N. (2010). Recent developments in microbial fuel cells: A review. Journal of Scientific and Industrial Research, 69, 727–731.

    CAS  Google Scholar 

  • De Juan, A., & Nixon, B. (2013). Technical evaluation of the microbial fuel cell technology. Wastewater Applications Declaration, 2013, 1–18.

    Google Scholar 

  • Deval, A. S., Parikh, H. A., Kadier, A., Chandrasekhar, K., Bhagwat, A. M., & Dikshit, A. K. (2017). Sequential microbial activities mediated bioelectricity production from distillery wastewater using bio-electrochemical system with simultaneous waste remediation. International Journal of Hydrogen Energy, 42, 1130–1141. https://doi.org/10.1016/J.Ijhydene.2016.11.114

  • Erable, B., Etcheverry, L., & Bergel, A. (2009). Increased power from a two-chamber microbial fuel cell with a low-Ph air-cathode compartment. Electrochemistry Communications, 11, 619–622. https://doi.org/10.1016/J.Elecom.2008.12.058

    Article  CAS  Google Scholar 

  • Feng, Y., Wang, X., Logan, B. E., & Lee, H. (2008). Brewery wastewater treatment using air-cathode microbial fuel cells. Applied Microbiology and Biotechnology, 78, 873–880. https://doi.org/10.1007/S00253-008-1360-2

    Article  CAS  PubMed  Google Scholar 

  • Gil, G. C., Chang, I. S., Kim, B. H., Kim, M., Jang, J. K., Park, H. S., et al. (2003). Operational parameters affecting the performance of a mediator-less microbial fuel cell. Biosensors & Bioelectronics, 18, 327–334. https://doi.org/10.1016/S0956-5663(02)00110-0

  • Gunaseelan Kuppurangam, G. S., Thirumurugan Ramasamy, V. V., & Kamaraj, S.-K. (2018). An overview of current trends in emergence of nanomaterials for sustainable microbial fuel cells. Environmental Chemistry for a Sustainable World, 23, 341–394.

    Article  Google Scholar 

  • Harnisch, F., & Freguia, S. (2012). A basic tutorial on cyclic voltammetry for the investigation of electroactive microbial biofilms. Chemistry: An Asian Journal, 7, 466–475. https://doi.org/10.1002/Asia.201100740

    Article  CAS  Google Scholar 

  • Hassan, M. M., Cheng, K. Y., Ho, G., & Cord-Ruwisch, R. (2017). New method for characterizing electron mediators in microbial systems using a thin-layer twin-working electrode cell. Biosensors & Bioelectronics, 87, 531–536. https://doi.org/10.1016/J.Bios.2016.08.091

    Article  CAS  Google Scholar 

  • Ieropoulos, I., Greenman, J., & Melhuish, C. (2010). Improved energy output levels from small-scale microbial fuel cells. Bioelectrochemistry, 78, 44–50. https://doi.org/10.1016/J.Bioelechem.2009.05.009

    Article  CAS  PubMed  Google Scholar 

  • Ishii, S., Suzuki, S., Norden-Krichmar, T. M., Nealson, K. H., Sekiguchi, Y., Gorby, Y. A., et al. (2012). Functionally stable and phylogenetically diverse microbial enrichments from microbial fuel cells during wastewater treatment. PLoS One, 7, 495. https://doi.org/10.1371/Journal.Pone.0030495

  • Jadhav, D. A., Deshpande, P. A., & Ghangrekar, M. M. (2017). Enhancing the performance of single-chambered microbial fuel cell using manganese/palladium and zirconium/palladium composite cathode catalysts. Bioresource Technology, 238, 568–574. https://doi.org/10.1016/J.Biortech.2017.04.085

    Article  CAS  PubMed  Google Scholar 

  • Jadhav, D. A., Chendake, A. D., Schievano, A., & Pant, D. (2019). Suppressing methanogens and enriching electrogens in bioelectrochemical systems. Bioresource Technology, 277, 148–156.

    Article  CAS  Google Scholar 

  • Jadhav, D. A., Das, I., Ghangrekar, M. M., & Pant, D. (2020a). Moving towards practical applications of microbial fuel cells for sanitation and resource recovery. Journal of Water Process Engineering, 38, 101566.

    Article  Google Scholar 

  • Jadhav, D. A., Carmona-Martinez, A. A., Chendake, A. D., Pandit, S., & Pant, D. (2020b). Modeling and optimization strategies towards performance enhancement of microbial fuel cells. Bioresource Technology, 124256. https://doi.org/10.1016/j.biortech.2020.124256

  • Kashyap, D., Dwivedi, P. K., Pandey, J. K., Kim, Y. H., Kim, G. M., Sharma, A., et al. (2014). Application of electrochemical impedance spectroscopy in bio-fuel cell characterization: A review. International Journal of Hydrogen Energy, 39, 20159–20170. https://doi.org/10.1016/J.Ijhydene.2014.10.003

  • Katuri, K. P., Scott, K., Head, I. M., Picioreanu, C., & Curtis, T. P. (2011). Microbial fuel cells meet with external resistance. Bioresource Technology, 102, 2758–2766. https://doi.org/10.1016/J.Biortech.2010.10.147

  • Katz, E., & Macvittie, K. (2013). Implanted biofuel cells operating in vivo-methods, applications and perspectives-feature article. Energy & Environmental Science, 6, 2791–2803. https://doi.org/10.1039/C3ee42126k

    Article  CAS  Google Scholar 

  • Kim, B., An, J., Kim, D., Kim, T., Jang, J. K., Lee, B. G., et al. (2013). Voltage increase of microbial fuel cells with multiple membrane electrode assemblies by in series connection. Electrochemistry Communications, 28, 131–134. https://doi.org/10.1016/J.Elecom.2012.12.019

  • Kim, T., Yeo, J., Yang, Y., Kang, S., Paek, Y., Kwon, J. K., et al. (2019). Boosting voltage without electrochemical degradation using energy-harvesting circuits and power management system-coupled multiple microbial fuel cells. Journal of Power Sources, 410–411, 171–178. https://doi.org/10.1016/J.Jpowsour.2018.11.010

  • Laurent, F., Grosgogeat, B., Reclaru, L., Dalard, F., & Lissac, M. (2001). Comparison of corrosion behaviour in presence of oral bacteria. Biomaterials, 22, 2273–2282. https://doi.org/10.1016/S0142-9612(00)00416-6

  • Liu, H., Cheng, S., & Logan, B. E. (2005). Power generation in fed-batch microbial fuel cells as a function of ionic strength, temperature, and reactor configuration. Environmental Science & Technology, 39, 5488–5493. https://doi.org/10.1021/Es050316c

    Article  CAS  Google Scholar 

  • Liu, J. L., Lowy, D. A., Baumann, R. G., & Tender, L. M. (2007). Influence Of anode pretreatment on its microbial colonization. Journal of Applied Microbiology, 102, 177–183. https://doi.org/10.1111/J.1365-2672.2006.03051.X

    Article  CAS  PubMed  Google Scholar 

  • Logan, B. E. (2008). Microbial fuel cells. Hoboken: Wiley.

    Google Scholar 

  • Logan, B. E., Hamelers, B., Rozendal, R., Schroeder, U., Keller, J. K., Freguia, S., et al. (2006a). Critical review: Microbial fuel cells: Methodology and technology. Washington, DC: American Chemical Society.

    Google Scholar 

  • Logan, B. E., Hamelers, B., Rozendal, R., Schröder, U., Keller, J., Freguia, S., et al. (2006b). Microbial fuel cells: Methodology and technology. Environmental Science & Technology, 40, 5181–5192. https://doi.org/10.1021/Es0605016

  • Logan, B. E., & Regan, J. M. (2006). Electricity-producing bacterial communities in microbial fuel cells. Trends in Microbiology, 14, 512–518. https://doi.org/10.1016/J.Tim.2006.10.003

    Article  CAS  PubMed  Google Scholar 

  • Luo, H., Yu, S., Liu, G., Zhang, R., & Teng, W. (2016). Effect of in-situ immobilized anode on performance of the microbial fuel cell with high concentration of sodium acetate. Fuel, 182, 732–739. https://doi.org/10.1016/J.Fuel.2016.06.032

  • Marke, O., & Tribollet, B. (2008). Electrochemical impedance spectroscopy. Hoboken: Wiley.

    Google Scholar 

  • Mateo, S., Cantone, A., Cañizares, P., Fernández-Morales, F. J., Scialdone, O., & Rodrigo, M. A. (2018). Development of a module of stacks of air-breathing microbial fuel cells to light-up a strip of LEDs. Electrochimica Acta, 274, 152–159. https://doi.org/10.1016/J.Electacta.2018.04.095

  • Mathuriya, A. S., Jadhav, D. A., & Ghangrekar, M. M. (2018). Architectural adaptations in microbial fuel cells. Applied Microbiology and Biotechnology, 102(22), 9419–9432.

    Article  CAS  Google Scholar 

  • Mesran, M., Mamat, S., Pang, R., Hong, T. Y., Muneera, Z., Ghazali, N. F., et al. (2014). Preliminary studies on immobilized cells-based microbial fuel cell system on its power generation performance originality. Asian Journal of Scientific Research, 4, 428–435.

    Google Scholar 

  • Michalska, J., Maciej Sowa, R. P. S., & Wojciech Simka, B. C. (2017). The influence of desulfovibrio desulfuricans bacteria on a Ni-Ti alloy: Electrochemical behavior and surface analysis. Electrochimica Acta, 2017, 249.

    Google Scholar 

  • Molognoni, D., Puig, S., Balaguer, M. D., Liberale, A., Capodaglio, A. G., Callegari, A., et al. (2014). Reducing start-up time and minimizing energy losses of microbial fuel cells using maximum power point tracking strategy. Journal of Power Sources, 269, 403–411. https://doi.org/10.1016/J.Jpowsour.2014.07.033

  • Mohan, S. V., & Chandrasekhar, K. (2011). Solid phase microbial fuel cell (SMFC) for harnessing bioelectricity from composite food waste fermentation: influence of electrode assembly and buffering capacity. Bioresource technology, 102(14), 7077-7085.

    Google Scholar 

  • Motoyama, A., Ichihashi, O., & Hirooka, K. (2016). Measurement of pH distribution near the air-cathode of a single-chamber microbial fuel cell using location sensor-equipped microelectrodes. Electrochemistry Communications, 72, 32–35. https://doi.org/10.1016/J.Elecom.2016.08.022

    Article  CAS  Google Scholar 

  • Narayanamoorthy, B., Datta, K. K. R., & Balaji, S. (2012). Kinetics and mechanism of electrochemical oxygen reduction using platinum/clay/nafion catalyst layer for polymer electrolyte membrane fuel cells. Journal of Colloid and Interface Science, 387, 213–220. https://doi.org/10.1016/J.Jcis.2012.08.002

    Article  CAS  PubMed  Google Scholar 

  • Oh, S., Min, B., & Logan, B. E. (2004). Cathode performance as a factor in electricity generation in microbial fuel cells. Environmental Science & Technology, 38, 4900–4904. https://doi.org/10.1021/Es049422p

    Article  CAS  Google Scholar 

  • Oh, S. E., & Logan, B. E. (2006). Proton exchange membrane and electrode surface areas as factors that affect power generation in microbial fuel cells. Applied Microbiology and Biotechnology, 70, 162–169. https://doi.org/10.1007/S00253-005-0066-Y

    Article  CAS  PubMed  Google Scholar 

  • Pant, D., Van Bogaert, G., Diels, L., & Vanbroekhoven, K. (2010). A review of the substrates used in microbial fuel cells (Mfcs) for sustainable energy production. Bioresource Technology, 101, 1533–1543. https://doi.org/10.1016/J.Biortech.2009.10.017

    Article  CAS  PubMed  Google Scholar 

  • Patil, S. A., Harnisch, F., Kapadnis, B., & Schröder, U. (2010). Electroactive mixed culture biofilms in microbial bioelectrochemical systems: The role of temperature for biofilm formation and performance. Biosensors & Bioelectronics, 26, 803–808. https://doi.org/10.1016/J.Bios.2010.06.019

    Article  CAS  Google Scholar 

  • Rabaey, K., Clauwaert, P., Aelterman, P., & Verstraete, W. (2005). Tubular microbial fuel cells for efficient electricity generation. Environmental Science & Technology, 39, 8077–8082. https://doi.org/10.1021/Es050986i

    Article  CAS  Google Scholar 

  • Reguera, G., Nevin, K. P., Nicoll, J. S., Covalla, S. F., Woodard, T. L., & Lovley, D. R. (2006). Biofilm and nanowire production leads to increased current in Geobacter sulfurreducens fuel cells. Applied and Environmental Microbiology, 72, 7345–7348. https://doi.org/10.1128/AEM.01444-06

  • Ren, Z., Yan, H., Wang, W., Mench, M. M., & Regan, J. M. (2011). Characterization of microbial fuel cells at microbially and electrochemically meaningful time scales. Environmental Science & Technology, 45, 2435–2441. https://doi.org/10.1021/Es103115a

  • Schröder, U. (2007). Anodic electron transfer mechanisms in microbial fuel cells and their energy efficiency. Physical Chemistry Chemical Physics, 9, 2619–2629. https://doi.org/10.1039/B703627m

    Article  PubMed  Google Scholar 

  • Scott, K., & Yu, E. H. (2016). Microbial electrochemical and fuel cells fundamentals and applications. London: Elsevier.

    Google Scholar 

  • Sekar, N., & Ramasamy, R. P. (2013). Electrochemical impedance spectroscopy for microbial fuel cell characterization. Journal of Microbial and Biochemical Technology, 5. https://doi.org/10.4172/1948-5948.S6-004

  • Sharma, V., & Kundu, P. P. (2010). Biocatalysts in microbial fuel cells. Enzyme and Microbial Technology, 47, 179–188. https://doi.org/10.1016/J.Enzmictec.2010.07.001

    Article  CAS  Google Scholar 

  • Srikanth, S., Venkata Mohan, S., & Sarma, P. N. (2010). Positive anodic poised potential regulates microbial fuel cell performance with the function of open and closed circuitry. Bioresource Technology, 101, 5337–5344. https://doi.org/10.1016/J.Biortech.2010.02.028

    Article  CAS  PubMed  Google Scholar 

  • Stöckl, M., Schlegel, C., Sydow, A., Holtmann, D., Ulber, R., & Mangold, K. M. (2016). Membrane separated flow cell for parallelized electrochemical impedance spectroscopy and confocal laser scanning microscopy to characterize electro-active microorganisms. Electrochimica Acta, 220, 444–452. https://doi.org/10.1016/J.Electacta.2016.10.057

  • Sun, G., Thygesen, A., Ale, M. T., Mensah, M., Poulsen, F. W., & Meyer, A. S. (2014). The significance of the initiation process parameters and reactor design for maximizing the efficiency of microbial fuel cells. Applied Microbiology and Biotechnology, 98, 2415–2427. https://doi.org/10.1007/S00253-013-5486-5

  • Torres. (2016). Critical transport rates that limit the performance of microbial electrochemistry technologies. Bioresource Technology, 275, 265–273.

    Google Scholar 

  • Vielstich, W. (2014). Cyclic voltammetry. Springer Series in Materials Science, 196, 111–117. https://doi.org/10.1007/978-3-319-04388-3_7

    Article  Google Scholar 

  • Vologni, V., Kakarla, R., Angelidaki, I., & Min, B. (2013). Increased power generation from primary sludge by a submersible microbial fuel cell and optimum operational conditions. Bioprocess and Biosystems Engineering, 36, 635–642. https://doi.org/10.1007/S00449-013-0918-2

    Article  CAS  PubMed  Google Scholar 

  • Wagner, R. C., Call, D. F., & Logan, B. E. (2010). Optimal set anode potentials vary in bioelectrochemical systems. Environmental Science & Technology, 44, 6036–6041. https://doi.org/10.1021/Es101013e

    Article  CAS  Google Scholar 

  • Wagner, R. C., Porter-Gill, S., & Logan, B. E. (2012). Immobilization of anode-attached microbes in a microbial fuel cell. AMB Express, 2, 2. https://doi.org/10.1186/2191-0855-2-2

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Watson, V. J., & Logan, B. E. (2011). Analysis of polarization methods for elimination of power overshoot in microbial fuel cells. Electrochemistry Communications, 13, 54–56. https://doi.org/10.1016/J.Elecom.2010.11.011

    Article  CAS  Google Scholar 

  • Winfield, J., Ieropoulos, I., Greenman, J., & Dennis, J. (2011). The overshoot phenomenon as a function of internal resistance in microbial fuel cells. Bioelectrochemistry, 81, 22–27. https://doi.org/10.1016/J.Bioelechem.2011.01.001

    Article  CAS  PubMed  Google Scholar 

  • Woodward, L., Perrier, M., Srinivasan, B., Pinto, R. P., & Tartakovsky, B. (2010). Comparison of real-time methods for maximizing power output in microbial fuel cells. AICHE Journal, 56, 2742–2750. https://doi.org/10.1002/Aic.12157

  • Yamashita, T., Hayashi, T., Iwasaki, H., Awatsu, M., & Yokoyama, H. (2019). Ultra-low-power energy harvester for microbial fuel cells and its application to environmental sensing and long-range wireless data transmission. Journal of Power Sources, 430, 1–11. https://doi.org/10.1016/J.Jpowsour.2019.04.120

  • Yang, F., Zhang, D., Shimotori, T., Wang, K. C., & Huang, Y. (2012). Study of transformer-based power management system and its performance optimization for microbial fuel cells. Journal of Power Sources, 205, 86–92. https://doi.org/10.1016/J.Jpowsour.2012.01.025

  • Zhang, F., Tian, L., & He, Z. (2011). Powering a wireless temperature sensor using sediment microbial fuel cells with vertical arrangement of electrodes. Journal of Power Sources, 196, 9568–9573. https://doi.org/10.1016/J.Jpowsour.2011.07.037

    Article  CAS  Google Scholar 

  • Zhang, P., Liu, J., Qu, Y., Zhang, J., Zhong, Y., & Feng, Y. (2017). Enhanced performance of microbial fuel cell with a bacteria/multi-walled carbon nanotube hybrid biofilm. Journal of Power Sources, 361, 318–325. https://doi.org/10.1016/J.Jpowsour.2017.06.069

  • Zhao, F., Rahunen, N., Varcoe, J. R., Roberts, A. J., Avignone-Rossa, C., Thumser, A. E., et al. (2009a). Factors affecting the performance of microbial fuel cells for sulfur pollutants removal. Biosensors & Bioelectronics, 24, 1931–1936. https://doi.org/10.1016/J.Bios.2008.09.030

  • Zhao, F., Slade, R. C. T., & Varcoe, J. R. (2009b). Techniques for the study and development of microbial fuel cells: An electrochemical perspective. Chemical Society Reviews, 38, 1926–1939. https://doi.org/10.1039/B819866g

  • Zhu, X., Tokash, J. C., Hong, Y., & Logan, B. E. (2013). Controlling the occurrence of power overshoot by adapting microbial fuel cells to high anode potentials. Bioelectrochemistry, 90, 30–35. https://doi.org/10.1016/J.Bioelechem.2012.10.004

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dipak A. Jadhav .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Gunaseelan, K., Gajalakshmi, S., Kamaraj, SK., Solomon, J., Jadhav, D.A. (2020). Electrochemical Losses and Its Role in Power Generation of Microbial Fuel Cells. In: Kumar, P., Kuppam, C. (eds) Bioelectrochemical Systems. Springer, Singapore. https://doi.org/10.1007/978-981-15-6872-5_5

Download citation

Publish with us

Policies and ethics