Skip to main content
Log in

Performance of on-site pilot static granular bed reactor (SGBR) for treating dairy processing wastewater and chemical oxygen demand balance modeling under different operational conditions

  • Original Paper
  • Published:
Bioprocess and Biosystems Engineering Aims and scope Submit manuscript

Abstract

The performance and operational stability of a pilot-scale static granular bed reactor (SGBR) for the treatment of dairy processing wastewater were investigated under a wide range of organic and hydraulic loading rates and temperature conditions. The SGBR achieved average chemical oxygen demand (COD), biological oxygen demand (BOD), and total suspended solids (TSS)-removal efficiencies higher than 90 % even at high loading rates up to 7.3 kg COD/m3/day, with an hydraulic retention time (HRT) of 9 h, and at low temperatures of 11 °C. The average methane yield of 0.26 L CH4/g CODremoved was possibly affected by a high fraction of particulate COD and operation at low temperatures. The COD mass balance indicated that soluble COD was responsible for most of the methane production. The reactor showed the capacity of the methanogens to maintain their activity and withstand organic and hydraulic shock loads.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Danalewich JR, Papagiannis TG, Belyea RL, Tumbleson ME, Raskin L (1998) Characterization of dairy waste streams, current treatment practices, and potential for biological nutrient removal. Water Res 32:3555–3568

    Article  CAS  Google Scholar 

  2. Demirel B, Yenigun O, Onay TT (2005) Anaerobic treatment of dairy wastewaters: a review. Process Biochem 40(8):2583–2595

    Article  CAS  Google Scholar 

  3. Speece RE (1996) Anaerobic Biotechnology for Industrial Wastewaters. Archae Press, Nashville

    Google Scholar 

  4. Tawfik A, Sobhey M, Badawy M (2008) Treatment of a combined dairy and domestic wastewater in an up-flow anaerobic sludge blanket (UASB) reactor followed by activated sludge (AS system). Desalination 227:167–177

    Article  CAS  Google Scholar 

  5. Debik E, Coskun T (2009) Use of the static granular bed reactor (SGBR) with anaerobic sludge to treat poultry slaughterhouse wastewater and kinetic modeling. Bioresour Technol 100:2777–2782

    Article  CAS  Google Scholar 

  6. Park J, Oh JH, Ellis TG (2012) Evaluation of an on-site pilot static granular bed reactor (SGBR) for the treatment of slaughterhouse wastewater. Bioprocess Biosyst Eng 35:459–468

    Article  CAS  Google Scholar 

  7. Turkdogan FI, Park J, Ellis TG (2013) Evaluation of pretreatment using UASB and SGBR reactors for pulp and paper plants wastewater treatment. Water Air Soil Pollut 224:1512

    Article  Google Scholar 

  8. California Regional Water Quality Control Board; Central Valley Region (2013) Information sheet order R5-2013-0019 waste discharge requirements and master recycling permit for City of Tulare Wastewater Treatment Facility Tulare County. Rancho Cordova, California

    Google Scholar 

  9. APHA (1998) Standard methods for the examination of water and wastewater, 20th edn. American Public Health Association, Washington

    Google Scholar 

  10. Rinzema A, van Lier J, Lettinga G (1988) Sodium inhibition of acetoclastic methanogens in granular sludge from a UASB reactor. Enzyme Microb Tech 10:24–32

    Article  CAS  Google Scholar 

  11. Lettinga G, Roersma R, Grin P (1983) Anaerobic treatment of raw domestic sewage at ambient temperatures using a granular bed UASB reactor. Biotechnol Bioeng 25:1701–1723

    Article  CAS  Google Scholar 

  12. Sanz I, Fdz-Polanco F (1990) Low temperature treatment of municipal sewage in anaerobic fluidized bed reactors. Water Res 24:463–469

    Article  CAS  Google Scholar 

  13. Uemura S, Harada H (2000) Treatment of sewage by a UASB reactor under moderate to low temperature conditions. Bioresour Technol 72:275–282

    Article  CAS  Google Scholar 

  14. Elmitwalli TA, Sklyar V, Zeeman G, Lettinga G (2002) Low temperature pre-treatment of domestic sewage in anaerobic hybrid or an anaerobic filter reactor. Bioresour Technol 82:233–239

    Article  CAS  Google Scholar 

  15. Zeeman G, Lettinga G (1999) The role of anaerobic digestion of domestic sewage in closing the water and nutrients cycle at community level. Water Sci Technol 39(5):187–194

    Article  Google Scholar 

  16. Ripley LE, Boyle WC, Converse JC (1986) Improved alkalimetric monitoring for anaerobic digestion of high-strength wastes. J Water Pollut Control Fed 58(5):406–411

    CAS  Google Scholar 

  17. Water Pollution Control Federation Manual of Practice No.16, Second Edition (1987) Anaerobic sludge digestion, water pollution control federation, pp 118

  18. Liu T, Sung S (2002) Ammonia inhibition on thermophilic acetoclastic methanogens. Water Sci Technol 45:113–120

    CAS  Google Scholar 

  19. Vandenburgh CR, Ellis TG (2002) Effect of varying solids concentration and organic loading on the performance of temperature phased anaerobic digestion process. Water Environ Res 74:142–148

    Article  CAS  Google Scholar 

  20. Grotenhuis JTC, Plugge CM, Stams AJM, Zehnder AJB (1991) Role of substrate concentration in particle size distribution of methanogenic granular sludge in UASB reactors. Water Res 25:21–27

    Article  CAS  Google Scholar 

  21. Kato MT, Field JA, Lettinga G (1997) The anaerobic treatment of low strength wastewaters in UASB and EGSB reactors. Water Sci Technol 36(6–7):375–382

    Article  CAS  Google Scholar 

  22. Kettunen RH, Rintala JA (1997) The effect of low temperature (5–29°C) and adaptation on the methanogenic activity of biomass. Appl Microbiol Biotechnol 48:570–576

    Article  CAS  Google Scholar 

  23. Ho J, Sung S (2010) Methanogenic activities in anaerobic membrane bioreactors (AnMBR) treating synthetic municipal wastewater. Bioresour Technol 101:2191–2196

    Article  CAS  Google Scholar 

  24. Lin CY, Noike T, Sato K, Matsumoto J (1987) Temperature characteristics of the methanogenesis process in anaerobic digestion. Water Sci Technol 19(1–2):299–310

    CAS  Google Scholar 

  25. Enright AM, McHugh S, Collins G, O’Flaherty V (2005) Low temperature anaerobic biological treatment of solvent-containing pharmaceutical wastewater. Water Res 39:4587–4596

    Article  CAS  Google Scholar 

  26. Lettinga G, Rebac S, Parshina S, Nozhevnikova A, van Lier J, Stams A (1999) High-rate anaerobic treatment of wastewater at low temperatures. Appl Environ Microbiol 65:1696–1702

    CAS  Google Scholar 

  27. McHugh S, Carton M, Collins G, O’Flaherty V (2004) Reactor performance and microbial community dynamics during anaerobic biological treatment of wastewaters at 16–37°C. FEMS Microbiol Ecol 48:369–378

    CAS  Google Scholar 

  28. Kalyuzhnyi SV, Sklyar VI, Davlyatshina MA, Parshina SN, Simankova MV, Kostrikina NA, Nozhevnikova AN (1996) Organic removal and microbiological features of UASB-reactor under various organic loading rates. Bioresour Technol 55:47–54

    Article  CAS  Google Scholar 

  29. Ruiz I, Veiga MC, Santiago P, Blazquez R (1997) Treatment of slaughterhouse wastewater in a UASB reactor and an anaerobic filter. Bioresour Technol 60:251–258

    Article  CAS  Google Scholar 

  30. Fang HHP, Yu HQ (2000) Effect of hydraulic retention time (HRT) on mesophilic acidogenesis of dairy wastewater. J Environ Eng 126(12):1145–1148

    Article  CAS  Google Scholar 

  31. Jawed M, Tare V (1996) Methanogenic activity and performance of UASB, DSFF and USFF reactors. Water Sci Technol 34(5–6):483–487

    Article  CAS  Google Scholar 

  32. Elefsiniotis P, Oldham WK (1994) Effect of HRT on acidogenic digestion of primary sludge. J Environ Eng 120(3):645–660

    Article  CAS  Google Scholar 

  33. Sayed S, Campen L, Lettinga G (1987) Anaerobic treatment of slaughterhouse waste using a granular sludge UASB reactor. Biol Wastes 21(1):11–28

    Article  CAS  Google Scholar 

  34. Mohammad J, Vinod T (1999) Microbial composition assessment of anaerobic biomass through methanogenic activity tests. Water SA 25(3):345–350

    Google Scholar 

  35. Elmitwalli TA, Oahn KLT, Zeeman G, Lettinga G (2002) Treatment of domestic sewage in a two-step system anaerobic filter/anaerobic hybrid reactor at low temperature. Water Res 36:2225–2232

    Article  CAS  Google Scholar 

  36. Rössle WH, Pretorius WA (2001) A review of characterization requirements for in-line prefermenters. Water SA 27(3):405–412

    Google Scholar 

  37. Pavlostathis SG, Giraldo-Gomez E (1991) Kinetics of anaerobic treatment: a critical review. Crit Rev Env Contr 21:411–490

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jaeyoung Park.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Oh, J.H., Park, J. & Ellis, T.G. Performance of on-site pilot static granular bed reactor (SGBR) for treating dairy processing wastewater and chemical oxygen demand balance modeling under different operational conditions. Bioprocess Biosyst Eng 38, 353–363 (2015). https://doi.org/10.1007/s00449-014-1275-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00449-014-1275-5

Keywords

Navigation