Skip to main content

Advertisement

Log in

Effect of biofilm formation on the performance of microbial fuel cell for the treatment of palm oil mill effluent

  • Original Paper
  • Published:
Bioprocess and Biosystems Engineering Aims and scope Submit manuscript

Abstract

Anode biofilm is a crucial component in microbial fuel cells (MFCs) for electrogenesis. Better knowledge about the biofilm development process on electrode surface is believed to improve MFC performance. In this study, double-chamber microbial fuel cell was operated with diluted POME (initial COD = 1,000 mg L−1) and polyacrylonitrile carbon felt was used as electrode. The maximum power density, COD removal efficiency and Coulombic efficiency were found as 22 mW m−2, 70 and 24 %, respectively. FTIR and TGA analysis confirmed the formation of biofilm on the electrode surface during MFC operation. The impact of anode biofilm on anodic polarization resistance was investigated using electrochemical impedance spectroscopy (EIS) and microbial community changes during MFC operation using denaturing gradient gel electrophoresis (DGGE). The EIS-simulated results showed the reduction of charge transfer resistance (R ct) by 16.9 % after 14 days of operation of the cell, which confirms that the development of the microbial biofilm on the anode decreases the R ct and therefore improves power generation. DGGE analysis showed the variation in the biofilm composition during the biofilm growth until it forms an initial stable microbial community, thereafter the change in the diversity would be less. The power density showed was directly dependent on the biofilm development and increased significantly during the initial biofilm development period. Furthermore, DGGE patterns obtained from 7th and 14th day suggest the presence of less diversity and probable functional redundancy within the anodic communities possibly responsible for the stable MFC performance in changing environmental conditions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Gong X-B, You S-J, Wang X-H, Gan Y, Zhang R-N, Ren N-Q (2013) Silver–tungsten carbide nanohybrid for efficient electrocatalysis of oxygen reduction reaction in microbial fuel cell. J Power Sources 225:330–337

    Article  CAS  Google Scholar 

  2. Pant D, Van Bogaert G, Diels L, Vanbroekhoven K (2010) A review of the substrates used in microbial fuel cells (MFCs) for sustainable energy production. Bioresour Technol 101(6):1533–1543

    Article  CAS  Google Scholar 

  3. Zhou M, Chi M, Wang H, Jin T (2012) Anode modification by electrochemical oxidation: a new practical method to improve the performance of microbial fuel cells. Biochem Eng J 60:151–155

    Article  CAS  Google Scholar 

  4. Liu H, Ramnarayanan R, Logan BE (2004) Production of electricity during wastewater treatment using a single chamber microbial fuel cell. Environ Sci Technol 38(7):2281–2285

    Article  CAS  Google Scholar 

  5. Min B, Kim J, Oh S, Regan JM, Logan BE (2005) Electricity generation from swine wastewater using microbial fuel cells. Water Res 39(20):4961–4968

    Article  CAS  Google Scholar 

  6. Kim B, Park H, Kim H, Kim G, Chang I, Lee J, Phung N (2004) Enrichment of microbial community generating electricity using a fuel-cell-type electrochemical cell. Appl Microbiol Biotechnol 63(6):672–681

    Article  CAS  Google Scholar 

  7. Luo H, Liu G, Zhang R, Jin S (2009) Phenol degradation in microbial fuel cells. Chem Eng J 147(2):259–264

    Article  CAS  Google Scholar 

  8. Liu H, Cheng S, Logan BE (2005) Production of electricity from acetate or butyrate using a single-chamber microbial fuel cell. Environ Sci Technol 39(2):658–662

    Article  CAS  Google Scholar 

  9. Kim BH, Chang IS, Gadd GM (2007) Challenges in microbial fuel cell development and operation. Appl Microbiol Biotechnol 76(3):485–494

    Article  CAS  Google Scholar 

  10. Kim HJ, Park HS, Hyun MS, Chang IS, Kim M, Kim BH (2002) A mediator-less microbial fuel cell using a metal reducing bacterium, <i> Shewanella putrefaciens </i>. Enzym Microb Technol 30(2):145–152

    Article  CAS  Google Scholar 

  11. Wei J, Liang P, Huang X (2011) Recent progress in electrodes for microbial fuel cells. Bioresour Technol 102(20):9335–9344

    Article  CAS  Google Scholar 

  12. Hays S, Zhang F, Logan BE (2011) Performance of two different types of anodes in membrane electrode assembly microbial fuel cells for power generation from domestic wastewater. J Power Sources 196(20):8293–8300

    Article  CAS  Google Scholar 

  13. González-García J, Bonete P, Expósito E, Montiel V, Aldaz A, Torregrosa-Maciá R (1999) Characterization of a carbon felt electrode: structural and physical properties. J Mater Chem 9(2):419–426

    Article  Google Scholar 

  14. Rabaey K, Boon N, Siciliano SD, Verhaege M, Verstraete W (2004) Biofuel cells select for microbial consortia that self-mediate electron transfer. Appl Environ Microbiol 70(9):5373–5382

    Article  CAS  Google Scholar 

  15. Franks AE, Malvankar N, Nevin KP (2010) Bacterial biofilms: the powerhouse of a microbial fuel cell. Biofuels 1(4):589–604

    Article  CAS  Google Scholar 

  16. Read ST, Dutta P, Bond PL, Keller J, Rabaey K (2010) Initial development and structure of biofilms on microbial fuel cell anodes. BMC Microbiol 10(1):98

    Article  Google Scholar 

  17. Toutain CM, Caiazza NC, O'Toole GA (2004) Molecular basis of biofilm development by pseudomonads. In: Microbial biofilms. ASM Press, Washington, DC, pp 43–63

  18. Xiao Y, Wu S, Zhang F, Wu Y, Yang Z, Zhao F (2013) Promoting electrogenic ability of microbes with negative pressure. J Power Sources 229:79–83

    Article  CAS  Google Scholar 

  19. Ramasamy RP, Ren Z, Mench MM, Regan JM (2008) Impact of initial biofilm growth on the anode impedance of microbial fuel cells. Biotechnol Bioeng 101(1):101–108

    Article  CAS  Google Scholar 

  20. Sekar N, Ramasamy RP (2013) Electrochemical impedance spectroscopy for microbial fuel cell characterization. J Microb Biochem Technol S 6:2

    Google Scholar 

  21. Cheng S, Xing D, Call DF, Logan BE (2009) Direct biological conversion of electrical current into methane by electromethanogenesis. Environ Sci Technol 43(10):3953–3958

    Article  CAS  Google Scholar 

  22. Baranitharan E, Khan MR, Prasad D, Salihon JB (2013) Bioelectricity generation from palm oil mill effluent in microbial fuel cell using polacrylonitrile carbon felt as electrode. Water Air Soil Pollut 224(5):1–11

    Article  CAS  Google Scholar 

  23. Borja R, Banks CJ, Sánchez E (1996) Anaerobic treatment of palm oil mill effluent in a two-stage up-flow anaerobic sludge blanket (UASB) system. J Biotechnol 45(2):125–135

    Article  CAS  Google Scholar 

  24. Chae K-J, Choi M-J, Lee J-W, Kim K-Y, Kim IS (2009) Effect of different substrates on the performance, bacterial diversity, and bacterial viability in microbial fuel cells. Bioresour Technol 100(14):3518–3525

    Article  CAS  Google Scholar 

  25. Zuo Y, Xing D, Regan JM, Logan BE (2008) Isolation of the exoelectrogenic bacterium Ochrobactrum anthropi YZ-1 by using a U-tube microbial fuel cell. Appl Environ Microbiol 74(10):3130–3137

    Article  CAS  Google Scholar 

  26. Yu Y–Y, Chen H-l, Yong Y-C, Kim D-H, Song H (2011) Conductive artificial biofilm dramatically enhances bioelectricity production in Shewanella-inoculated microbial fuel cells. Chem Commun 47(48):12825–12827

    Article  CAS  Google Scholar 

  27. Muyzer G, De Waal EC, Uitterlinden AG (1993) Profiling of complex microbial populations by denaturing gradient gel electrophoresis analysis of polymerase chain reaction-amplified genes coding for 16S rRNA. Appl Environ Microbiol 59(3):695–700

    CAS  Google Scholar 

  28. He Z, Mansfeld F (2009) Exploring the use of electrochemical impedance spectroscopy (EIS) in microbial fuel cell studies. Energy Environ Sci 2(2):215–219

    Article  CAS  Google Scholar 

  29. Rabaey K, Clauwaert P, Aelterman P, Verstraete W (2005) Tubular microbial fuel cells for efficient electricity generation. Environ Sci Technol 39(20):8077–8082

    Article  CAS  Google Scholar 

  30. He Z, Minteer SD, Angenent LT (2005) Electricity generation from artificial wastewater using an upflow microbial fuel cell. Environ Sci Technol 39(14):5262–5267

    Article  CAS  Google Scholar 

  31. Min B, Logan BE (2004) Continuous electricity generation from domestic wastewater and organic substrates in a flat plate microbial fuel cell. Environ Sci Technol 38(21):5809–5814

    Article  CAS  Google Scholar 

  32. Bond DR, Lovley DR (2003) Electricity production by Geobacter sulfurreducens attached to electrodes. Appl Environ Microbiol 69(3):1548–1555

    Article  CAS  Google Scholar 

  33. Jahim J, Wan Ramli W, Ismail M, Anuar N, Kamarudin SK, Shari SN (2010) Optimization of electricity generation and Palm Oil Mill Effluent (POME) treatment from microbial fuel cell. J Appl Sci 10(24):3355–3360

    Article  Google Scholar 

  34. Marcus (2008) Fuel cell that uses bacteria to generate electricity science daily. www.sciencedaily.com/releases/2008/01/080103101137.htm. Accessed 01 June 2014

  35. Marsili E, Rollefson JB, Baron DB, Hozalski RM, Bond DR (2008) Microbial biofilm voltammetry: direct electrochemical characterization of catalytic electrode-attached biofilms. Appl Environ Microbiol 74(23):7329–7337

    Article  CAS  Google Scholar 

  36. Kim G, Webster G, Wimpenny J, Kim B, Kim H, Weightman A (2006) Bacterial community structure, compartmentalization and activity in a microbial fuel cell. J Appl Microbiol 101(3):698–710

    Article  CAS  Google Scholar 

  37. Kramer J, Soukiazian S, Mahoney S, Hicks-Garner J (2012) Microbial fuel cell biofilm characterization with thermogravimetric analysis on bare and polyethyleneimine surface modified carbon foam anodes. J Power Sources 210:122–128

    Article  CAS  Google Scholar 

  38. Karnnet S, Potiyaraj P, Pimpan V (2005) Preparation and properties of biodegradable stearic acid-modified gelatin films. Polym Degrad Stab 90(1):106–110

    Article  CAS  Google Scholar 

  39. Nanda PK, Krishna Rao K, Nayak PL (2007) Biodegradable polymers. XI. Spectral, thermal, morphological, and biodegradability properties of environment‐friendly green plastics of soy protein modified with thiosemicarbazide. J Appl Polym Sci 103(5):3134–3142

    Article  CAS  Google Scholar 

  40. Rabaey K, Verstraete W (2005) Microbial fuel cells: novel biotechnology for energy generation. Trends Biotechnol 23(6):291–298

    Article  CAS  Google Scholar 

  41. Briones A, Raskin L (2003) Diversity and dynamics of microbial communities in engineered environments and their implications for process stability. Curr Opin Biotechnol 14(3):270–276

    Article  CAS  Google Scholar 

  42. Fernandez AS, Hashsham SA, Dollhopf SL, Raskin L, Glagoleva O, Dazzo FB, Hickey RF, Criddle CS, Tiedje JM (2000) Flexible community structure correlates with stable community function in methanogenic bioreactor communities perturbed by glucose. Appl Environ Microbiol 66(9):4058–4067

    Article  CAS  Google Scholar 

  43. Barsoukov E, Macdonald JR (2005) Impedance spectroscopy: theory, experiment, and applications. Wiley, New York

    Book  Google Scholar 

  44. Orazem ME, Tribollet B (2011) Electrochemical impedance spectroscopy, vol 48. Wiley, New York

    Google Scholar 

  45. Scully JR, Silverman DC, Kendig MW (1993) Electrochemical impedance: analysis and interpretation, vol 1188. ASTM International, Philadelphia

    Book  Google Scholar 

  46. He Z, Wagner N, Minteer SD, Angenent LT (2006) An upflow microbial fuel cell with an interior cathode: assessment of the internal resistance by impedance spectroscopy. Environ Sci Technol 40(17):5212–5217

    Article  CAS  Google Scholar 

  47. Srikanth S, Marsili E, Flickinger MC, Bond DR (2008) Electrochemical characterization of Geobacter sulfurreducens cells immobilized on graphite paper electrodes. Biotechnol Bioeng 99(5):1065–1073

    Article  CAS  Google Scholar 

  48. Meland A-K, Bedeaux D, Kjelstrup S (2005) A Gerischer phase element in the impedance diagram of the polymer electrolyte membrane fuel cell anode. J Phys Chem B 109(45):21380–21388

    Article  CAS  Google Scholar 

Download references

Acknowledgments

Authors would like to thank the Ministry of Higher Education, Malaysia and Universiti Malaysia Pahang, Malaysia for funding (RDU120611 and RDU110341) this project. We also acknowledge the High Impact Research Funds from Ministry of Higher Education (F000005-21001) and Ministry of Science, Technology and Innovation (MOSTI) e-science (04-01-03-SF0666). We are thankful to Baiju Vidyadaran, Faculty of Science and Technology, Universiti malaysia Pahang for helping to conduct EIS experiments and valuable consultations. Authors are also thankful to the anonymous reviewers for the valuable comments.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Maksudur R. Khan.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Baranitharan, E., Khan, M.R., Prasad, D.M.R. et al. Effect of biofilm formation on the performance of microbial fuel cell for the treatment of palm oil mill effluent. Bioprocess Biosyst Eng 38, 15–24 (2015). https://doi.org/10.1007/s00449-014-1239-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00449-014-1239-9

Keywords

Navigation