Skip to main content
Log in

Effect of Configurations, Bacterial Adhesion, and Anode Surface Area on Performance of Microbial Fuel Cells Used for Treatment of Synthetic Wastewater

  • Published:
Water, Air, & Soil Pollution Aims and scope Submit manuscript

Abstract

This study shows the effects of various conditions on performance of microbial fuel cells (MFCs) used to treat synthetic wastewater that contained glucose. The conditions included the following: three different configurations (dual-chamber MFC with proton exchange membrane (PEM), single-chamber MFC with PEM, and single-chamber MFC without PEM); bacterial adhesion; and increasing the anode surface area by using activated alumina, extruded activated carbon, and granular activated carbon. The maximum voltage production, power density, and COD removal values were 28 mV, 0.46 mW/m2, and 68.8 %, respectively, in case of dual-chamber MFC with PEM; 3 mV, 0.0053 mW/m2, and 54.5 %, respectively, in case of single-chamber MFC with PEM; and 78 mV, 10.77 mW/m2, and 83 %, respectively, in case of single-chamber MFC without PEM. The voltage generation, power density, and COD removal increased to 351 mV, 218 mW/m2, and 98.7 %, respectively, when using an anode electrode that was immersed in the microbial solution for 1 week beforehand in the single-chamber MFC without PEM. The voltage generation and power density improved to 420 mV and 312 mW/m2, respectively, after increasing the anode area through with 170 g activated alumina, but no improvement was observed when using extruded activated carbon or granular activated carbon under the same conditions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

References

  • Buitrón, G., & Cervantes Astorga, C. (2013). Performance evaluation of a low-cost microbial fuel cell using municipal wastewater. Water, Air, & Soil Pollution, 224(3), 1–8.

    Article  Google Scholar 

  • Catal, T., Li, K., Bermek, H., & Liu, H. (2008). Electricity production from twelve monosaccharides using microbial fuel cells. Journal of Power Sources, 175(1), 196–200.

    Article  CAS  Google Scholar 

  • Chaudhuri, S. K., & Lovley, D. R. (2003). Electricity generation by direct oxidation of glucose in mediatorless microbial fuel cells. Nature Biotechnology, 21(10), 1229–1232.

    Article  CAS  Google Scholar 

  • Choi, J., & Liu, Y. (2014). Power generation and oil sands process-affected water treatment in microbial fuel cells. Bioresource Technology, 169, 581–587.

    Article  CAS  Google Scholar 

  • Crittenden, S. R., Sund, C. J., & Sumner, J. J. (2006). Mediating electron transfer from bacteria to a gold electrode via a self-assembled monolayer. Langmuir, 22(23), 9473–9476.

    Article  CAS  Google Scholar 

  • Debik, E., & Coskun, T. (2009). Use of the static granular bed reactor (SGBR) with anaerobic sludge to treat poultry slaughterhouse wastewater and kinetic modeling. Bioresource Technology, 100(11), 2777–2782.

    Article  CAS  Google Scholar 

  • Di Lorenzo, M., Scott, K., Curtis, T. P., & Head, I. M. (2010). Effect of increasing anode surface area on the performance of a single-chamber microbial fuel cell. Chemical Engineering Journal, 156(1), 40–48.

    Article  Google Scholar 

  • Dong, H., Yu, H., Wang, X., Zhou, Q., & Feng, J. (2012). A novel structure of scalable air-cathode without Nafion and Pt by rolling activated carbon and PTFE as catalyst layer in microbial fuel cells. Water Research, 46(17), 5777–5787.

    Article  CAS  Google Scholar 

  • Fan, Y., Hu, H., & Liu, H. (2007). Enhanced coulombic efficiency and power density of air-cathode microbial fuel cells with an improved cell configuration. Journal of Power Sources, 171(2), 348–354.

    Article  CAS  Google Scholar 

  • Feng, Y., Wang, X., Logan, B. E., & Lee, H. (2008). Brewery wastewater treatment using air-cathode microbial fuel cells. Applied Microbiology and Biotechnology, 78(5), 873–880.

    Article  CAS  Google Scholar 

  • Hawkes, F. R., Kim, J. R., Kyazze, G., & Premier, G. C. (2009). Feedstocks for BES conversions

  • He, Z., Minteer, S. D., & Angenent, L. T. (2005). Electricity generation from artificial wastewater using an upflow microbial fuel cell. Environmental Science & Technology, 39(14), 5262–5267.

    Article  CAS  Google Scholar 

  • He, Z., Wagner, N., Minteer, S. D., & Angenent, L. T. (2006). An upflow microbial fuel cell with an interior cathode: assessment of the internal resistance by impedance spectroscopy. Environmental Science & Technology, 40(17), 5212–5217.

    Article  CAS  Google Scholar 

  • Jeong, C. M., Choi, J. D. R., Ahn, Y., & Chang, H. N. (2008). Removal of volatile fatty acids (VFA) by microbial fuel cell with aluminum electrode and microbial community identification with 16S rRNA sequence. Korean Journal of Chemical Engineering, 25(3), 535–541.

    Article  CAS  Google Scholar 

  • Jia, Q., Wei, L., Han, H., & Shen, J. (2014). Factors that influence the performance of two-chamber microbial fuel cell. International Journal of Hydrogen Energy, 39(25), 13687–13693.

  • Lepage, G., Perrier, G., Ramousse, J., & Merlin, G. (2014). First steps towards a constructal microbial fuel cell. Bioresource Technology, 162, 123–128.

    Article  CAS  Google Scholar 

  • Li, J., Liu, C., Liao, Q., Zhu, X., & Ye, D. (2013). Improved performance of a tubular microbial fuel cell with a composite anode of graphite fiber brush and graphite granules. International Journal of Hydrogen Energy, 38(35), 15723–15729.

    Article  CAS  Google Scholar 

  • Li, W. W., Sheng, G. P., Liu, X. W., & Yu, H. Q. (2011). Recent advances in the separators for microbial fuel cells. Bioresource Technology, 102(1), 244–252.

    Article  CAS  Google Scholar 

  • Liu, H., & Logan, B. E. (2004). Electricity generation using an air-cathode single chamber microbial fuel cell in the presence and absence of a proton exchange membrane. Environmental Science & Technology, 38(14), 4040–4046.

    Article  CAS  Google Scholar 

  • Logan, B. E. (2008). Microbial fuel cells. Pennsylvani: John Wiley & Sons.

    Google Scholar 

  • Logan, B. E., & Regan, J. M. (2006). Electricity-producing bacterial communities in microbial fuel cells. TRENDS in Microbiology, 14(12), 512–518.

    Article  CAS  Google Scholar 

  • Logan, B. E., Hamelers, B., Rozendal, R., Schröder, U., Keller, J., Freguia, S., & Rabaey, K. (2006). Microbial fuel cells: methodology and technology. Environmental Science & Technology, 40(17), 5181–5192.

    Article  CAS  Google Scholar 

  • Logan, B., Cheng, S., Watson, V., & Estadt, G. (2007). Graphite fiber brush anodes for increased power production in air-cathode microbial fuel cells.Environmental science & technology, 41(9), 3341–3346.

  • Lovley, D. R. (2006). Bug juice: harvesting electricity with microorganisms. Nature Reviews Microbiology, 4(7), 497–508.

    Article  CAS  Google Scholar 

  • Min, B., Cheng, S., & Logan, B. E. (2005). Electricity generation using membrane and salt bridge microbial fuel cells. Water Research, 39(9), 1675–1686.

    Article  CAS  Google Scholar 

  • Moon, H., Chang, I. S., & Kim, B. H. (2006). Continuous electricity production from artificial wastewater using a mediatorless microbial fuel cell. Bioresource Technology, 97(4), 621–627.

    Article  CAS  Google Scholar 

  • Nam, J. Y., Kim, H. W., Lim, K. H., & Shin, H. S. (2010). Effects of organic loading rates on the continuous electricity generation from fermented wastewater using a single-chamber microbial fuel cell. Bioresource Technology, 101(1), S33–S37.

    Article  CAS  Google Scholar 

  • Nimje, V. R., Chen, C. Y., Chen, C. C., Tsai, J. Y., Chen, H. R., Huang, Y. M., & Shih, R. C. (2011). Microbial fuel cell of Enterobacter cloacae: Effect of anodic pH microenvironment on current, power density, internal resistance and electrochemical losses. International Journal of Hydrogen Energy, 36(17), 11093–11101.

    Article  CAS  Google Scholar 

  • Oliveira, V. B., Simões, M., Melo, L. F., & Pinto, A. M. F. R. (2013). Overview on the developments of microbial fuel cells. Biochemical Engineering Journal, 73, 53–64.

    Article  Google Scholar 

  • Pant, D., Van Bogaert, G., Diels, L., & Vanbroekhoven, K. (2010). A review of the substrates used in microbial fuel cells (MFCs) for sustainable energy production. Bioresource Technology, 101(6), 1533–1543.

    Article  CAS  Google Scholar 

  • Patil, S. A., Harnisch, F., Koch, C., Hübschmann, T., Fetzer, I., Carmona-Martínez, A. A., & Schröder, U. (2011). Electroactive mixed culture derived biofilms in microbial bioelectrochemical systems: the role of pH on biofilm formation, performance and composition. Bioresource Technology, 102(20), 9683–9690.

    Article  CAS  Google Scholar 

  • Rabaey, K., & Verstraete, W. (2005). Microbial fuel cells: novel biotechnology for energy generation. TRENDS in Biotechnology, 23(6), 291–298.

    Article  CAS  Google Scholar 

  • Rabaey, K., Lissens, G., Siciliano, S. D., & Verstraete, W. (2003). A microbial fuel cell capable of converting glucose to electricity at high rate and efficiency. Biotechnology Letters, 25(18), 1531–1535.

    Article  CAS  Google Scholar 

  • Richter, H., McCarthy, K., Nevin, K. P., Johnson, J. P., Rotello, V. M., & Lovley, D. R. (2008). Electricity generation by Geobacter sulfurreducens attached to gold electrodes. Langmuir, 24(8), 4376–4379.

    Article  CAS  Google Scholar 

  • Thung, W. E., Ong, S. A., Ho, L. N., Wong, Y. S., Oon, Y. L., Oon, Y. S., & Lehl, H. K. (2015). Simultaneous wastewater treatment and power generation with innovative design of an upflow membraneless microbial fuel cell. Water, Air, & Soil Pollution, 226(5), 1–7.

    Article  CAS  Google Scholar 

  • Velasquez-Orta, S. B., Head, I. M., Curtis, T. P., & Scott, K. (2011). Factors affecting current production in microbial fuel cells using different industrial wastewaters. Bioresource Technology, 102(8), 5105–5112.

    Article  CAS  Google Scholar 

  • Wang, X., Cheng, S., Feng, Y., Merrill, M. D., Saito, T., & Logan, B. E. (2009). Use of carbon mesh anodes and the effect of different pretreatment methods on power production in microbial fuel cells. Environmental Science & Technology, 43(17), 6870–6874.

    Article  CAS  Google Scholar 

  • Xiao, B., Han, Y., Liu, X., & Liu, J. (2014). Relationship of methane and electricity production in two-chamber microbial fuel cell using sewage sludge as substrate. International Journal of Hydrogen Energy, 39(29), 16419–16425.

    Article  CAS  Google Scholar 

  • Yuan, Y., Zhao, B., Zhou, S., Zhong, S., & Zhuang, L. (2011). Electrocatalytic activity of anodic biofilm responses to pH changes in microbial fuel cells. Bioresource Technology, 102(13), 6887–6891.

    Article  CAS  Google Scholar 

  • Zhang, F., Ahn, Y., & Logan, B. E. (2014). Treating refinery wastewaters in microbial fuel cells using separator electrode assembly or spaced electrode configurations. Bioresource Technology, 152, 46–52.

    Article  CAS  Google Scholar 

  • Zhang, L., Li, C., Ding, L., Xu, K., & Ren, H. (2011). Influences of initial pH on performance and anodic microbes of fed‐batch microbial fuel cells. Journal of Chemical Technology and Biotechnology, 86(9), 1226–1232.

    Article  CAS  Google Scholar 

  • Zhou, M., Chi, M., Luo, J., He, H., & Jin, T. (2011). An overview of electrode materials in microbial fuel cells. Journal of Power Sources, 196(10), 4427–4435.

Download references

Acknowledgments

The authors wish to thank Dr. Maha Elshafai at Housing and Building National Research Center for her help with the analyses; the specialists at Micro Analytical Center, Cairo University, for their assistance with the microbiological analyses. The authors kindly thank Elsevier’s WebShop for the English revision of this manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Safwat Ahmed.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ahmed, S., Rozaik, E. & Abdelhalim, H. Effect of Configurations, Bacterial Adhesion, and Anode Surface Area on Performance of Microbial Fuel Cells Used for Treatment of Synthetic Wastewater. Water Air Soil Pollut 226, 300 (2015). https://doi.org/10.1007/s11270-015-2567-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11270-015-2567-3

Keywords

Navigation