Skip to main content
Log in

Magma evolution of Quaternary minor volcanic centres in southern Peru, Central Andes

  • Research Article
  • Published:
Bulletin of Volcanology Aims and scope Submit manuscript

Abstract

Minor centres in the Central Volcanic Zone (CVZ) of the Andes occur in different places and are essential indicators of magmatic processes leading to formation of composite volcano. The Andahua–Orcopampa and Huambo monogenetic fields are located in a unique tectonic setting, in and along the margins of a deep valley. This valley, oblique to the NW–SE-trend of the CVZ, is located between two composite volcanoes (Nevado Coropuna to the east and Nevado Sabancaya to the west). Structural analysis of these volcanic fields, based on SPOT satellite images, indicates four main groups of faults. These faults may have controlled magma ascent and the distribution of most centres in this deep valley shaped by en-echelon faulting. Morphometric criteria and 14C age dating attest to four main periods of activity: Late Pleistocene, Early to Middle Holocene, Late Holocene and Historic. The two most interesting features of the cones are the wide compositional range of their lavas (52.1 to 68.1 wt.% SiO2) and the unusual occurrence of mafic lavas (olivine-rich basaltic andesites and basaltic andesites). Occurrence of such minor volcanic centres and mafic magmas in the CVZ may provide clues about the magma source in southern Peru. Such information is otherwise difficult to obtain because lavas produced by composite volcanoes are affected by shallow processes that strongly mask source signatures. Major, trace, and rare earth elements, as well as Sr-, Nd-, Pb- and O-isotope data obtained on high-K calc-alkaline lavas of the Andahua–Orcopampa and Huambo volcanic province characterise their source and their evolution. These lavas display a range comparable to those of the CVZ composite volcanoes for radiogenic and stable isotopes (87Sr/86Sr: 0.70591–0.70694, 143Nd/144Nd: 0.512317–0.512509, 206Pb/204Pb: 18.30–18.63, 207Pb/204Pb: 15.57–15.60, 208Pb/204Pb: 38.49–38.64, and δ 18O: 7.1–10.0‰ SMOW), attesting to involvement of a crustal component. Sediment is absent from the Peru–Chile trench, and hence cannot be the source of such enrichment. Partial melts of the lowermost part of the thick Andean continental crust with a granulitic garnet-bearing residue added to mantle-derived arc magmas in a high-pressure MASH [melting, assimilation, storage and homogenisation] zone may play a major role in magma genesis. This may also explain the chemical characteristics of the Andahua–Orcopampa and Huambo magmas. Fractional crystallisation processes are the main governors of magma evolution for the Andahua–Orcopampa and Huambo volcanic province. An open-system evolution is, however, required to explain some O-isotopes and some major and trace elements values. Modelling of AFC processes suggests the Charcani gneisses and the local Andahua–Orcopampa and Huambo basement may be plausible contaminants.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

References

  • Aitcheson SJ, Forrest AH (1994) Quantification of crustal contamination in open magmatic systems. J Petrol 35:461–488

    Google Scholar 

  • Aitcheson SJ, Harmon RS, Moorbath S, Schneider A, Soler P, Soria-Escalante E, Steele G, Swainbank I, Wörner G (1995) Pb isotopes define basement domains of the Altiplano, Central Andes. Geology 23:555–558

    Article  Google Scholar 

  • Allmendiger RW, Eremchuck JE, Sosa-Gomez J, Ojeda J, Francis PW (1989) The Pasto–Ventura pull-apart and southward collapse of the southern Puna plateau. J Latin Am Earth Sci 2:111–130

    Article  Google Scholar 

  • Antayhua Y, Tavera H, Bernal I (2001) Analisis de la actividad sismica en la region del volcán Sabancaya (Arequipa). Bol Soc Geol Perú 92:78–79

    Google Scholar 

  • Babeyko AY, Sobolev SV, Trumbull RB, Oncken O, Lavier LL (2002) Numerical models of crustal scale convection and partial melting beneath the Altiplano–Puna Plateau. Earth Planet Sci Lett 199:373–388

    Article  Google Scholar 

  • Bacon CR, Hirschmann MM (1988) Mg/Mn partitioning as a test for equilibrium between coexisting Fe–Ti oxides. Amer Mineral 73:57–61

    Google Scholar 

  • Barazangi W, Isacks BL (1976) Spatial distribution of earthquakes and subduction of the Nazca plate beneath South America. Geology 4:686–692

    Article  Google Scholar 

  • Barreiro BA, Clark AH (1984) Lead isotopic evidence for evolutionary changes in magma-crust interaction, Central Andes, southern Peru. Earth Planet Sci Lett 69:30–42

    Article  Google Scholar 

  • Baumont D, Paul A, Zandt G, Beck SL (2001) Inversion of Pn travel times for lateral variations of Moho geometry beneath the Central Andes and comparison with the receiver functions. Geophys Res Lett 28:1663–1666

    Article  Google Scholar 

  • Beck SL, Zandt G (2002) The nature of the orogenic crust in the Central Andes. J Geophys Res 107:1–16

    Article  Google Scholar 

  • Beck S, Zandt G, Myers SL, Wallace T, Silver P, Drake LP (1996) Crustal thickness variations in the Central Andes. Geology 24:407–410

    Article  Google Scholar 

  • Cahill TA, Isacks BL (1992) Seismicity and shape of the subducted Nazca plate. J Geophys Res 97:17503–17529

    Google Scholar 

  • Caldas J (1993) Geologia de los cuadrangulos de Huambo y Orcopampa. Bull Inst Geol Minar Metal Lima 46:1–62

    Google Scholar 

  • Chiba H, Chacko T, Clayton RN, Goldsmith JR (1989) Oxygen isotope fractionations involving diopside, forsterite, magnetite and calcite; application to geothermometry. Geochim Cosmochim Acta 53:2985–2995

    Article  Google Scholar 

  • Churikova T, Dorendorf F, Wörner G (2001) Sources and fluids in the mantle wedge below Kamchatka, evidence from across-arc geochemical variation. J Petrol 42:1567–1593

    Article  Google Scholar 

  • Clayton RN, Mayeda TK (1963) The use of bromine pentafluoride in the extraction of oxygen from oxides and silicates for isotopic analyses. Geochim Cosmochim Acta 27:43–52

    Article  Google Scholar 

  • Colton HS (1967) The basaltic cinder cones and lava flows of the San Francisco Mountain volcanic field, Arizona. Museum of Northern Arizona Bulletin:10 (revised), Flagstaff, pp 1–50

    Google Scholar 

  • Coplen TK (1993) Normalization of oxygen and hydrogen isotope data. Chem Geol 72:293–297

    Google Scholar 

  • Davidson JP, Harmon RS (1989) Oxygen isotope constraints on the petrogenesis of volcanic arc magmas from Martinique, Lesser Antilles. Earth Planet Sci Lett 95:255–270

    Article  Google Scholar 

  • Davidson JP, de Silva SL (1995) Late Cenozoic magmatism of the Bolivian Altiplano. Contrib Mineral Petrol 119:387–408

    Google Scholar 

  • Davidson JP, Harmon RS, Wörner G (1991) The source of the Central Andean Magmas; Some considerations. In: Harmon RS, Rapela CW (eds) Andean magmatism and its tectonic setting. Geol Soc Am, Special Paper 265:233–243

  • Defant MJ (2002) Forum. EOS 83(23):256–257

    Google Scholar 

  • Defant MJ, Drummond MS (1990) Derivation of some modern island arc magmas by melting of young subducted lithosphere. Nature 347:662–665

    Article  Google Scholar 

  • De Paolo DJ (1981) Trace elements and isotopic effects of combined wallrock assimilation and fractional crystallization. Earth Planet Sci Lett 53:189–202

    Article  Google Scholar 

  • Deruelle B (1982) Petrology of Plio-Quaternary volcanism of the south central and meridional Andes. J Volcanol Geotherm Res 14:77–124

    Article  Google Scholar 

  • De Silva SL, Xuming L (2000) Trace element character of minor centres from southern Peru: insight into source relationships beneath the Central Volcanic Zone of the Andes. In: Abstract of State of the Arc 2000 (IAVCEI) Processes and Time Scales in the Genesis and Evolution of Arc Magmas, Ruapehu New Zealand, pp 41–44

  • Dick HJB, Bullen T (1984) Chromian spinel as a petrogenetic indicator in abyssal and alpine-type peridotites and spatially associated lavas. Contrib Mineral Petrol 86:54–76

    Article  Google Scholar 

  • Fisk MR, Bence AE (1980) Experimental crystallization of chrome spinel in FAMOUS basalt 527-1-1. Earth Planet Sci Lett 48:111–123

    Article  Google Scholar 

  • Fowler MB, Harmon RS (1990) The oxygen isotope composition of lower crustal granulite xenoliths. In: Vielzeuf D, Vidal Ph (eds) Granulites and crustal evolution. Kluwer, Dordrecht, pp 493–506

    Google Scholar 

  • Garrison JM, Davidson JP (2003) Dubious case for slab melting in the Northern volcanic zone of the Andes. Geology 6:565–568

    Article  Google Scholar 

  • Gerbault M, Martinod J, Hérail G (2005) Possible orogeny-parallel lower crustal flow and thickening in the Central Andes. Tectonophysics 399:59–72

    Article  Google Scholar 

  • Gerbe MC, Thouret JC (2004) Role of magma mixing in the petrogenesis of tephra erupted during the 1990–98 explosive activity of Nevado Sabancaya, southern Peru. Bull Volcanol 66:541–561

    Article  Google Scholar 

  • Giese P, Scheuber E, Schilling F, Schmitz M, Wigger P (1999) Crustal thickening processes in the Central Andes and the different natures of the MOHO discontinuity. In: Reutter KJ (ed) Central Andean deformation. J S Amer Earth Sci 12:201–220

  • Gregory-Wodzicki KM (2000) Uplift history of the Central and Northern Andes: A review. Geol Soc Amer Bull 112:1091–1105

    Article  Google Scholar 

  • Gregory R, Criss RE (1986) Isotopic exchange in open and closed systems. In: Valley JW, Taylor HP Jr, O Neil JR (ed) Stable isotopes in high temperature geological processes. Rev Miner 16:91–127

  • Harmon RS, Hoefs J (1984) Oxygen isotope ratios in Late Cenozoic Andean Volcanics. In: Harmon RS, Barreiro BA (eds) Andean Magmatism: Chemical and isotopic constraints, Shiva, London, pp 9–20

    Google Scholar 

  • Harmon RS, Hoefs J (1995) Oxygen isotope heterogeneity of the mantle deduced from global 18O systematics of basalts from different geotectonic settings. Contrib Mineral Petrol 120:95–114

    Google Scholar 

  • Harmon RS, Barreiro BA, Moorbath S, Hoefs J, Francis PW, Thorpe RS, Deruelle B, McHugh J, Viglino JA (1984) Regional O-, Sr-, and Pb-isotope relationships in late Cenozoic calc–alkaline lavas of the Andean Cordillera. J. Geol Soc 141:803–822

    Google Scholar 

  • Hildreth W, Moorbath S (1988) Crustal contributions to arc magmatism in the Andes of Central Chile. Contrib Mineral Petrol 98:455–489

    Article  Google Scholar 

  • Huaman D, Chorowicz J, Deffontaines B, Guillande R, Rudaut JP (1993) Cadre structurale et risques géologiques étudiés à l’aide de l’imagerie spatiale : la région du Colca (Andes du Sud Pérou). Bull Soc Géol Fr 164:807–818

    Google Scholar 

  • Irvine TN (1967) Chromian spinel as a petrogenetic indicator Part 2, Petrologic applications. Can J Earth Sci 2:648–671

    Google Scholar 

  • Isacks BL (1988) Uplift of the central Andean plateau and bending of the Bolivian orocline. J Geophys Res 93:3211–3231

    Google Scholar 

  • Ito E, Stern RJ (1986) Oxygen- and strontium-isotopic investigations of subduction zone volcanism; the case of the Volcano Arc and the Marianas island arc. Earth Planet Sci Lett 76:312–320

    Article  Google Scholar 

  • James DE (1971) Plate tectonics and structure of the Andean orogenic belt. EOS, Trans Amer Geophys Union 52(4):351

    Google Scholar 

  • James DE (1982) A combined O, Sr, Nd, and Pb isotopic and trace element study of crustal contamination in Central Andes lavas, I Local geochemical variations. Earth Planet Sci Lett 57:47–62

    Article  Google Scholar 

  • Jurewicz AJG, Watson EB (1988) Cations in olivine, Part 1: Calcium partitioning and calcium–magnesium distribution between olivine and co-existing melts, with petrologic applications. Contrib Mineral Petrol 99:176–185

    Article  Google Scholar 

  • Kalamarides RI (1986) High temperature oxygen isotope fractionation among phases of the Kiglapait intrusion, Labrador, Canada. Chem Geol 58:303–310

    Google Scholar 

  • Kaneoka CJ, Guevara C (1984) K–Ar determinations of late tertiary and quaternary Andean volcanic rocks, in Southern Peru. Geochem J 18:233–239

    Google Scholar 

  • Kay SM (2002) Andean adakites from slab melting, crustal thickening, and fore-arc subduction erosion, 5th International Symposium of Andean Geodynamics, pp 405–408

  • Kay RW, Kay SM (1993) Delamination and delamination magmatism. Tectonophysics 219:177–189

    Article  Google Scholar 

  • Kay SM, Maksaev V, Moscoso R, Mpodozis C, Nasi C (1987) Probing the evolving Andean lithosphere: Mid-late Tertiary magmatism in Chile (29°–30° 30′S) over the modern zone of subhorizontal subduction. J Geophys Res 92:6173–6189

    Google Scholar 

  • Kay SM, Coira B, Viramonte J (1994) Young mafic back-arc volcanic rocks as indicators of continental lithospheric delamination beneath the Argentine Puna plateau, Central Andes. J Geophys Res 99:24323–24336

    Article  Google Scholar 

  • Kay SM, Mpodozis C, Coira B (1999) Neogene magmatism, tectonics, and mineral deposits of the central Andes (22 to 33°S). In: Skinner BJ (ed) Geology and Ore deposits of the Central Andes. Soc Economic Geol Spec Publ 7:27–59

  • Kretz R (1981) Transfer exchange equilibria in a portion of the pyroxene quadrilateral as deduced from natural and experimental data. Geochim Cosmochim Acta 46:411–421

    Article  Google Scholar 

  • Kyser TK, O’Neil JR, Carmichael SE (1981) Oxygen isotope thermometry of basic lavas and mantle nodules. Contrib Mineral Petrol 77:11–23

    Article  Google Scholar 

  • Lamb S (2000) Active deformation in the Bolivian Andes, South America. J Geophys Res 106:25627–25653

    Article  Google Scholar 

  • Leake BE, Woolley AR, Arps CES, Birch WD, Gilbert MC, Grice JD, Hawthorne FC, Kato A, Kisch HJ, Krivovichev VG, Linthout K, Laird J, Mandarino JA, Maresch WV, Nickel EH, Rock NMS, Schumacher JC, Smith DC, Stephenson NCN, Ungaretti L, Whittaker EJW, Youzhi G (1997) Nomenclature of amphiboles: report of the subcommittee on Amphiboles of the International Mineralogical Association, Commission on New Minerals Names. Am Miner 82:1019–1037

    Google Scholar 

  • Leeman WP (1978) Distribution of Mg2+ between olivine and silicate melt, and its implications regarding melt structure. Geochim Cosmochim Acta 42:789–800

    Article  Google Scholar 

  • Le Maitre RW (ed) (1989) A classification of igneous rocks and glossary of terms: recommendations of the International Union of Geological Sciences Subcommission on the Systematics of Igneous Rocks. Blackwell, Oxford, pp 193

    Google Scholar 

  • Mamani M, Wörner G, Ruprecht P, Hartmann G, Simon K (2004) Sources of Central Andean Magmatism in time and space: implications from geochemical data from Quaternary to Miocene volcanism in S Peru and N Chile. International Association of Volcanology and Chemistry of the Earth’s Interior, Pucón Chile, pp 14–19 Nov

    Google Scholar 

  • Mercier JL, Sebrier M, Lavenu A, Cabrera J, Bellier O, Dumont JF, Machare J (1992) Changes in the tectonic regime above a subduction zone of Andean type; the Andes of Peru and Bolivia during the Pliocene–Pleistocene. J Geophys Res 97:11945–11982

    Google Scholar 

  • Mering C, Huaman D, Chorowicz J, Deffontaines B, Guillande R (1996) New data on the geodynamics of Southern Peru from computerized analysis of SPOT and SAR ERS-1 images. Tectonophysics 259:153–169

    Article  Google Scholar 

  • Morimoto N (1988) Nomenclatures of pyroxenes. Can Mineral 27:143–156

    Google Scholar 

  • Norabuena E, Leffler-Grivin L, Mao A, Dixon T, Stein S, Selwyn-Sacks I, Ocola L, Ellis M (1998) Space geodetic observations of Nazca–South America convergence across the Central Andes. Science 279:358–362

    Article  Google Scholar 

  • Norabuena EO, Dixon TH, Stein S, Harrison CGA (1999) Decelerating Nazca–South America and Nazca–Pacific plate motions. Geophys Res Lett 26:3405–3408

    Article  Google Scholar 

  • Peccerillo A, Taylor SR (1976) Geochemistry of the Eocene calc–alkaline volcanic rocks from the Kastamonu area, northern Turkey. Contrib Mineral Petrol 58:63–81

    Article  Google Scholar 

  • Pin C, Santos Zalduegui JF (1997) Sequential separation of light rare-earth elements, thorium and uranium by miniaturized extraction chromatography: application to isotopic analyses of silicate rocks. Anal Chim Acta 339:79–89

    Article  Google Scholar 

  • Pin C, Briot D, Bassin C, Poitrasson F (1994) Concomitant separation of strontium and samarium–neodynium for isotopic analysis in silicate samples, based on specific extraction chromatography. Anal Chim Acta 298:209–217

    Article  Google Scholar 

  • Roeder PL, Emslie RF (1970) Olivine-liquid equilibrium. Contrib Mineral Petrol 29:275–289

    Article  Google Scholar 

  • Ruprecht P, Wörner G, Kronz A (2006) Variable regimes in magma systems documented in plagioclase zoning patterns: El Misti stratovolcano and Andagua monogenetic cones (S Peru) (submitted to Contrib Mineral Petrol)

  • Sébrier M, Soler P (1991) Tectonics and magmatism in the Peruvian Andes from late Oligocene time to Present. Bull Geol Soc Amer Special Paper 265:259–277

    Google Scholar 

  • Shipboard Scientific Party (2002). Leg 202 Preliminary Report. ODP Prelim Report, 102 [Online] http://www-odp.tamu.edu/publications/prelim/202_prel/202PREL.PDF

  • Sisson TW, Grove TL (1993) Experimental investigations of the role of H2O in calc–alkaline differentiation and subduction zone magmatism. Contrib Mineral Petrol 113:143–166

    Article  Google Scholar 

  • Somoza R (1998) Updated Nazca (Farallon)–South America relative motions during the last 40 My; implications for mountain building in the Central Andean region. J S Amer Sci 11:211–215

    Google Scholar 

  • Spencer KJ, Lindsley DH (1981) A solution model for co-existing iron–titanium oxides. Amer Mineral 11–12:1189–1201

    Google Scholar 

  • Stern RJ (2002) Subduction zones. Rev Geophys 40:31–38

    Google Scholar 

  • Sun SS, Mc Donough WF (1989) Chemical and isotopic systematics of oceanic basalts: implications for mantle composition and processes In: Saunders AD, Norry MJ (eds) Magmatism in the Ocean Basins. Geol Soc London Spec Publ 42:313–345

  • Tassara A (2005) Interaction between the Nazca and South American plates and formation of the Altiplano–Puna plateau: review of a flexural analysis along the Andean margin (15°–34°S). Tectonophysics 399:39–57

    Article  Google Scholar 

  • Thornburg TM, Kulm LD (1987) Sedimentation in the Chile Trench; depositional morphologies, lithofacies, and stratigraphy. Geol Soc Amer Bull 98:33–52

    Article  Google Scholar 

  • Thorpe RS, Francis PW, O’Callaghan L (1984) Relatives roles of source composition, fractional crystallization and crustal contamination in the petrogenesis of Andean volcanic rocks. Phil Trans R Soc Lond 310:675–692

    Google Scholar 

  • Thouret JC, Juvigné E, Gourgaud A, Boivin P, Dávila J (2002) Reconstruction of the AD 1600 Huaynaputina eruption based on the correlation of geologic evidence with early Spanish chronicles. J Volcanol Geotherm Res 115:529–570

    Article  Google Scholar 

  • Todt W, Cliff RA, Hanser A, Hoffman AW (1984) 202Pb–205Pb spike for Pb analysis. Terra Cognita 4:209

    Google Scholar 

  • Vatin-Pérignon N, Poupeau G, Oliver RA, Lavenu A, Labrin E, Keller F, Bellot-Gurlet L (1996) Trace and rare-earth element characteristics of acidic tuffs from southern Peru and northern Bolivia and a fission-track age for the sillar of Arequipa. J S Amer Earth Sci 9:91–109

    Article  Google Scholar 

  • Vennemann TW, Smith HS (1990) The rate and temperature of reaction of ClF3 with silicate minerals, and their relevance to oxygen isotope analysis. Chem Geol, Isot Geosci Sect 86:83–88

    Article  Google Scholar 

  • Venturelli G, Fragipane M, Weibel M, Antiga D (1978) Trace element distribution in the Cenozoic lavas of Nevado Coropuna and Andagua Valley, Central Andes of Southern Peru. Bull Volcanol 41:213–228

    Article  Google Scholar 

  • Vicente JC, Sequeiros F, Valdivia MA, Zavala J (1979) The Cincha–Lluta Overthrust; elements of a major Andean discontinuity in northwestern Arequipa. Bol Soc Geol Peru 61:67–99

    Google Scholar 

  • Victor P, Oncken O, Glodny J (2004) Uplift of the western Altiplano plateau: Evidence from the Precordillera between 20° and 21°S (northern Chile). Tectonics 23:1–24

    Article  Google Scholar 

  • Wells PRA (1977) Pyroxene thermometry in simple and complex systems. Contrib Mineral Petrol 62:129–140

    Article  Google Scholar 

  • White WM (2005) Geochemistry. An online text book. http://www.geo.cornell.edu/geology/classes/geo455/Chapters.HTML

  • Whitman D, Isacks BL, Chatelain JL, Chiu JM, Perez A (1992) Attenuation of high-frequency seismic waves beneath the central Andean plateau. J Geophys Res 97:19929–19947

    Article  Google Scholar 

  • Whitman D, Isacks LB, Kay SM (1996) Lithospheric structure and along-strike segmentation of the Central Andean Plateau; seismic Q, magmatism, flexure, topography and tectonics. In: Dewey JF and Lamb SH (ed) Geodynamic of the Andes. Tectonophysics 259:29–40

  • Wilson M (1989) Igneous petrogenesis. Chapman & Hall, London

    Google Scholar 

  • Wood CA (1980) Morphometric analysis of cinder cone degradation. J Volcanol Geotherm Res 8:137–160

    Article  Google Scholar 

  • Wood BJ, Banno S (1973) Garnet–orthopyroxene and orthopyroxene–clinopyroxene relationships in simple and complex systems. Contrib Mineral Petrol 42:109–124

    Article  Google Scholar 

  • Wörner G, Moorbath S, Harmon RS (1992) Andean Cenozoic volcanics reflect basement isotopic domains. Geology 20:1103–1106

    Article  Google Scholar 

  • Wörner G, Uhlig D, Kohler I, Seyfried MH (2002) Evolution of the West Andean Escarpment at 18°S (N Chile) during the last 25 Ma: uplift, erosion and collapse through time. Tectonophysics 345:183–198

    Article  Google Scholar 

  • Yuan X, Sobolev SV, Kind R (2002) Moho topography in the Central Andes and its geodynamic implications. Earth Planet Sci Lett 199:389–402

    Article  Google Scholar 

  • Zandt G, Velasco AA, Beck S (1994) Central Andean lithosphere structure from slant stacking for teleseismic depth-phase precursors. EOS, Trans Amer Geophys Union 75(44):69

    Google Scholar 

  • Zhao Z, Zheng Y (2003) Calculation of oxygen isotope fractionation in magmatic rocks. Chem Geol 193:59–80

    Article  Google Scholar 

Download references

Acknowledgements

The authors are grateful to M. Veschambre for assistance on the electron microprobe, and C. Perrache and C. Bosq, G. Hartman and K. Simon for invaluable help in REE and radiogenic isotopes analyses. We also thank our Peruvian colleagues and PhD students of IGP (Instituto Geofisico del Peru, Lima) for their support in the field. We gratefully acknowledge the constructive comments of Richard Price, Suzanne Kay and the associate editor, James White, which greatly improved this manuscript. Funding and logistical support for this project were provided by IRD (Institut de Recherche pour le Développement, Lima, Peru), by LMV (Laboratoire Magmas et Volcans UMR 6524 CNRS, Clermont, France), by CRV (ex-Coordination de la Recherche Volcanologique, Clermont) and by IGP (Lima, Peru). Financial support to GW was provided by DFG project Wo362/18.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Adélie Delacour.

Additional information

Editorial responsibility: J. White

Appendix

Appendix

Appendix A Morphometric parameters (based on Wood 1980) measured on topographic maps (scale 1:50,000) and aerial photographs (scale 1:30,000) for the Andahua, Orcopampa, and Huambo volcanic minor centres

Rights and permissions

Reprints and permissions

About this article

Cite this article

Delacour, A., Gerbe, MC., Thouret, JC. et al. Magma evolution of Quaternary minor volcanic centres in southern Peru, Central Andes. Bull Volcanol 69, 581–608 (2007). https://doi.org/10.1007/s00445-006-0096-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00445-006-0096-z

Keywords

Navigation