Skip to main content

Advertisement

Log in

Four years of experimental warming do not modify the interaction between subalpine shrub species

  • Global change ecology – original research
  • Published:
Oecologia Aims and scope Submit manuscript

Abstract

Climate warming can lead to changes in alpine plant species interactions through modifications in environmental conditions, which may ultimately cause drastic changes in plant communities. We explored the effects of 4 years of experimental warming with open-top chambers (OTC) on Vaccinium myrtillus performance and its interaction with neighbouring shrubs at the Pyrenean treeline ecotone. We examined the effects of warming on height, above-ground (AG) and below-ground (BG) biomass and the C and N concentration and isotope composition of V. myrtillus growing in pure stands or in stands mixed with Vaccinium uliginosum or Rhododendron ferrugineum. We also analysed variations in soil N concentrations, rhizosphere C/N ratios and the functional diversity of the microbial community, and evaluated whether warming altered the biomass, C and N concentration and isotope composition of V. uliginosum in mixed plots. Our results showed that warming induced positive changes in the AG growth of V. myrtillus but not BG, while V. uliginosum did not respond to warming. Vaccinium myrtillus performance did not differ between stand types under increased temperatures, suggesting that warming did not induce shifts in the interaction between V. myrtillus and its neighbouring species. These findings contrast with previous studies in which species interactions changed when temperature was modified. Our results show that species interactions can be less responsive to warming in natural plant communities than in removal experiments, highlighting the need for studies involving the natural assembly of plant species and communities when exploring the effect of environmental changes on plant–plant interactions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Abbreviations

AG:

Above-ground

BG:

Below-ground

δ13C:

Carbon isotope composition

δ15N:

Nitrogen isotope composition

References

  • Anadon-Rosell A, Rixen C, Cherubini P, Wipf S, Hagedorn F, Dawes MA (2014) Growth and phenology of three dwarf shrub species in a six-year soil warming experiment at the alpine treeline. PLoS One 9(6):e100577. doi:10.1371/journal.pone.0100577

    Article  PubMed  PubMed Central  Google Scholar 

  • Anadon-Rosell A, Palacio S, Nogués S, Ninot JM (2016) Vaccinium myrtillus stands show similar structure and functioning under different scenarios of coexistence at the Pyrenean treeline. Plant Ecol 217:115–1128. doi:10.1007/s11258-016-0637-2

    Article  Google Scholar 

  • Bai E, Li S, Xu W, Li W, Dai W, Jiang P (2013) A meta-analysis of experimental warming effects on terrestrial nitrogen pools and dynamics. New Phytol 199:441–451. doi:10.1111/nph.12252

    Article  Google Scholar 

  • Bardgett RD, Wardle DA (2010) Aboveground–belowground linkages. Biotic interactions, ecosystem processes, and global change. Oxford University Press, Oxford

    Google Scholar 

  • Bertness MD, Callaway R (1994) Positive interactions in communities. Trends Ecol Evol 9:187–191

    Article  Google Scholar 

  • Blume-Werry G, Wilson SD, Kreyling J, Milbau A (2016) The hidden season: growing season is 50% longer below than above ground along an arctic elevation gradient. New Phytol 209:978–986. doi:10.1111/nph.13655

    Article  CAS  PubMed  Google Scholar 

  • Bokhorst S, Huiskes A, Aerts R, Convey P, Cooper EJ, Dalen L, Erschbamer B, Gudmundsson J, Hofgaard A, Hollister RD, Johnstone J, Jónsdóttir IS, Lebouvier M, Van de Vijver B, Wahren C-H, Dorrepaal E (2013) Variable temperature effects of Open Top Chambers at polar and alpine sites explained by irradiance and snow depth. Glob Change Biol 19:64–74. doi:10.1111/gcb.12028

    Article  Google Scholar 

  • Bolòs O, Vigo J, Masalles RM, Ninot JM (2005) Flora Manual dels Països Catalans. 3rd ed. rev. and ext. Ed. Pòrtic SA, Barcelona

  • Callaway RM, Walker LR (1997) Competition and facilitation: a synthetic approach to interactions in plant communities. Ecology 78:1958–1965. doi:10.1890/0012-9658

    Article  Google Scholar 

  • Callaway RM, Brooker RW, Choler P, Kikvidze Z, Lortie CJ, Michalet R, Paolini L, Pugnaire FI, Newingham B, Aschehoug ET, Armas C, Kikodze D, Cook BJ (2002) Positive interactions among alpine plants increase with stress. Nature 417:844–848. doi:10.1038/nature00812

    Article  CAS  PubMed  Google Scholar 

  • Chapin FS, Shaver GR, Giblin AE, Nadelhoffer KJ, Laundre JA (1995) Responses of Arctic tundra to experimental and observed changes in climate. Ecology 76:694–711

    Article  Google Scholar 

  • Chesson P (2000) Mechanisms of maintenance of species diversity. Annu Rev Ecol Syst 31:343–366. doi:10.1146/annurev.ecolsys.31.1.343

    Article  Google Scholar 

  • Choler P, Michalet R, Callaway RM (2001) Facilitation and competition on gradients in alpine plant communities. Ecology 82:3295–3308. doi:10.1890/0012-9658

    Article  Google Scholar 

  • Christiansen CT, Haugwitz MS, Priemé A, Nielsen CS, Elberling B, Michelsen A, Grogan P, Blok D (2017) Enhanced summer warming reduces fungal decomposer diversity and litter mass loss more strongly in dry than in wet tundra. Glob Change Biol 23:406–420. doi:10.1111/gcb.13362

    Article  Google Scholar 

  • Chu C-J, Maestre FT, Xiao S, Weiner J, Wang Y-S, Duan Z-H, Wang G (2008) Balance between facilitation and resource competition determines biomass–density relationships in plant populations. Ecol Lett 11:1189–1197. doi:10.1111/j.1461-0248.2008.01228.x

    PubMed  Google Scholar 

  • Classen AT, Sundqvist MK, Henning JA, Newman GS, Moore JAM, Cregger MA, Moorhead LC, Patterson CM (2015) Direct and indirect effects of climate change on soil microbial and soil microbial-plant interactions: what lies ahead? Ecosphere 6(8):130. doi:10.1890/ES15-00217.1

    Article  Google Scholar 

  • Cornelissen JHC, Van Bodegom PM, Aerts R, Callaghan TV, Van Logtestijn RSP, Alatalo J, Stuart Chapin F, Gerdol R, Gudmundsson J, Gwynn-Jones D, Hartley AE, Hik DS, Hofgaard A, Jónsdóttir IS, Karlsson S, Klein JA, Laundre J, Magnusson B, Michelsen A, Molau U, Onipchenko VG, Quested HM, Sandvik SM, Schmidt IK, Shaver GR, Solheim B, Soudzilovskaia NA, Stenström A, Tolvanen A, Totland Ø, Wada N, Welker JM, Zhao X, Brancaleoni L, Brancaleoni L, De Beus MAH, Cooper EJ, Dalen L, Harte J, Hobbie SE, Hoefsloot G, Jägerbrand A, Jonasson S, Lee JA, Lindblad K, Melillo JM, Neill C, Press MC, Rozema J, Zielke M (2007) Global negative vegetation feedback to climate warming responses of leaf litter decomposition rates in cold biomes. Ecol Lett 10:619–627. doi:10.1111/j.1461-0248.2007.01051.x

    Article  PubMed  Google Scholar 

  • Cornelissen JHC, Song Y-B, Yu F-H, Dong M (2014) Plant traits and ecosystem effects of clonality: a new research agenda. Ann Bot. doi:10.1093/aob/mcu113

    PubMed  PubMed Central  Google Scholar 

  • Craine JM, Elmore AJ, Aidar MPM, Bustamante M, Dawson TE, Hobbie EA, Kahmen A, MacK MC, McLauchlan KK, Michelsen A, Nardoto GB, Pardo LH, Peñuelas J, Reich PB, Schuur EAG, Stock WD, Templer PH, Virginia RA, Welker JM, Wright IJ (2009) Global patterns of foliar nitrogen isotopes and their relationships with climate, mycorrhizal fungi, foliar nutrient concentrations, and nitrogen availability. New Phytol 183:980–992. doi:10.1111/j.1469-8137.2009.02917.x

    Article  CAS  PubMed  Google Scholar 

  • D’Odorico P, He Y, Collins S, De Wekker SFJ, Engel V, Fuentes JD (2013) Vegetation-microclimate feedbacks in woodland-grassland ecotones. Glob Ecol Biogeogr 22:364–379. doi:10.1111/geb.12000

    Article  Google Scholar 

  • Dawes MA, Hagedorn F, Zumbrunn T, Handa IT, Hättenschwiler S, Wipf S, Rixen C (2011) Growth and community responses of alpine dwarf shrubs to in situ CO2 enrichment and soil warming. New Phytol 191:806–818. doi:10.1111/j.1469-8137.2011.03722.x

    Article  PubMed  Google Scholar 

  • De Boeck HJ, De Groote T, Nijs I (2012) Leaf temperatures in glasshouses and open-top chambers. New Phytol 194:1155–1164. doi:10.1111/j.1469-8137.2012.04117.x

    Article  PubMed  Google Scholar 

  • de Mendiburu F (2010) agricolae: Statistical procedures for agricultural research. R package version 1.0-9

  • DeAngelis KM, Pold G, Topcuoglu BD, van Diepen LTA, Varney RM, Blanchard JL, Melillo J, Frey SD (2015) Long-term forest soil warming alters microbial communities in temperate forest soils. Front Microbiol 6:104. doi:10.3389/fmicb.2015.00104

    Article  PubMed  PubMed Central  Google Scholar 

  • Díaz S, Symstad AJ, Chapin FS III, Wardle DA, Huenneke LF (2003) Functional diversity revealed by removal experiments. Trends Ecol Evol 18:140–146. doi:10.1016/S0169-5347(03)00007-7

    Article  Google Scholar 

  • Dijkstra FA, Blumenthal D, Morgan JA, Pendall E, Carrillo Y, Follett RF (2010) Contrasting effects of elevated CO2 and warming on nitrogen cycling in a semiarid grassland. New Phytol 187:426–437. doi:10.1111/j.1469-8137.2010.03293.x

    Article  CAS  PubMed  Google Scholar 

  • Dormann CF, Van Der Wal R, Woodin SJ (2004) Neighbour identity modifies effects of elevated temperature on plant performance in the High Arctic. Glob Change Biol 10:1587–1598. doi:10.1111/j.1365-2486.2004.00830.x

    Article  Google Scholar 

  • Dullinger S, Dirnböck T, Grabherr G (2003) Patterns of shrub invasion into high mountain grasslands of the Northern Calcareous Alps, Austria. Arct Antarct Alp Res 35:434–441. doi:10.1657/1523-0430

    Article  Google Scholar 

  • Fajardo A, McIntire EJB (2011) Under strong niche overlap conspecifics do not compete but help each other to survive: facilitation at the intraspecific level. J Ecol 99:642–650. doi:10.1111/j.1365-2745.2010.01771.x

    Google Scholar 

  • Flower-Ellis JGK (1971) Age, structure and dynamics in stands of bilberry (Vaccinium myrtillus L.) Department of Forest Ecology and Forest Soils. Research Note 9. Royal College of Forestry, Stockholm, Sweden

  • Fu G, Shen Z-X, Sun W, Zhong Z-M, Zhang X-Z, Zhou Y-T (2015) A meta-analysis of the effects of experimental warming on plant physiology and growth on the Tibetan Plateau. J Plant Growth Regul 34:57–65. doi:10.1007/s00344-014-9442-0

    Article  CAS  Google Scholar 

  • Garland JL, Mills AL (1991) Classification and characterization of heterotrophic microbial communities on the basis of patterns of community-level sole-carbon-source utilization. Appl Environ Microbiol 57:2351–2359

    CAS  PubMed  PubMed Central  Google Scholar 

  • Hartley AE, Neill C, Melillo JM, Crabtree R, Bowles FP (1999) Plant performance and soil nitrogen mineralization in response to simulated climate change in subarctic dwarf shrub heath. Oikos 86:331–343. doi:10.2307/3546450

    Article  Google Scholar 

  • Heskel M, Greaves H, Kornfeld A, Gough L, Atkin OK, Turnbull MH, Shaver G, Griffin KL (2013) Differential physiological responses to environmental change promote woody shrub expansion. Ecol Evol 3:1149–1162. doi:10.1002/ece3.525

    Article  PubMed  PubMed Central  Google Scholar 

  • Hobbie SE (1996) Temperature and plant species control over litter decomposition in Alaskan tundra. Ecol Monogr 66:503–522. doi:10.2307/2963492

    Article  Google Scholar 

  • Hollister RD, Flaherty KJ (2010) Above- and below-ground plant biomass response to experimental warming in northern Alaska. Appl Veg Sci 13:378–387. doi:10.1111/j.1654-109X.2010.01079.x

    Google Scholar 

  • Hollister RD, Webber PJ (2000) Biotic validation of small open-top chambers in a tundra ecosystem. Glob Change Biol 6:835–842. doi:10.1046/j.1365-2486.2000.00363.x

    Article  Google Scholar 

  • Hollister RD, Webber PJ, Nelson FE, Tweedie CE (2006) Soil thaw and temperature response to air warming varies by plant community: results from an open-top chamber experiment in northern Alaska. Arct Antarct Alp Res 38:206–215. doi:10.1657/1523-0430

    Article  Google Scholar 

  • Hothorn T, Bretz F, Westfall P (2008) Simultaneous inference in general parametric models. Biometrical J 50:346–363. doi:10.1002/bimj.200810425

    Article  Google Scholar 

  • Insam H (1997) A new set of substrates proposed for community characterization in environmental samples. In: Insam H, Rangger A (eds) Microbial Communities. pp 259–260

  • Kaneko S, Inagaki M, Morishita T (2010) A simple method for the determination of nitrate in potassium chloride extracts from forest soils. In: Gilkes RJ, Prakongkep N (eds) Proceedings of the 19th World Congress of Soil Science: Soil solutions for a changing world. pp 4–7

  • Kempers AJ, Kok CJ (1989) Re-examination of the determination of ammonium as the indophenol blue complex using salicylate. Anal Chim Acta 221:147–155. doi:10.1016/S0003-2670(00)81948-0

    Article  CAS  Google Scholar 

  • Klanderud K (2005) Climate change effects on species interactions in an alpine plant community. J Ecol 93:127–137. doi:10.1111/J.1365-2745.2004.00944.X

    Article  Google Scholar 

  • Klanderud K (2008) Species-specific responses of an alpine plant community under simulated environmental change. J Veg Sci 19:363–372. doi:10.3170/2008-8-18376

    Article  Google Scholar 

  • Klanderud K, Totland Ø (2005) The relative importance of neighbours and abiotic environmental conditions for population dynamic parameters of two alpine plant species. J Ecol 93:493–501. doi:10.1111/j.1365-2745.2005.01000.x

    Article  Google Scholar 

  • Körner C (2003) Alpine plant life: functional plant ecology of high mountain ecosystems, 2n edn. Springer, Berlin

    Book  Google Scholar 

  • Kudo G, Suzuki S (2003) Warming effects on growth, production, and vegetation structure of alpine shrubs: a five-year experiment in northern Japan. Oecologia 135:280–287. doi:10.1007/s00442-003-1179-6

    Article  PubMed  Google Scholar 

  • Laine P, Bigot J, Ourry A, Boucaud J (1994) Effects of low temperature on nitrate uptake, and xylem and phloem flows of nitrogen, in Secale cereale L. and Brassica napus L. New Phytol 127:675–683. doi:10.1111/j.1469-8137.1994.tb02970.x

    Article  CAS  Google Scholar 

  • Little CJ, Jägerbrand AK, Molau U, Alatalo JM (2015) Community and species-specific responses to simulated global change in two subarctic-alpine plant communities. Ecosphere. doi:10.1890/ES14-00427.1

    Google Scholar 

  • Marion GM, Henry GHR, Freckman DW, Johnstone J, Jones G, Jones MH, Lévesque E, Molau U, Mølgaard P, Parsons AN, Svoboda J, Virginia RA (1997) Open-top designs for manipulating field temperature in high-latitude ecosystems. Glob Change Biol 3:20–32. doi:10.1111/j.1365-2486.1997.gcb136.x

    Article  Google Scholar 

  • Muñiz S, Lacarta J, Pata MP, Jiménez JJ, Navarro E (2014) Analysis of the diversity of substrate utilisation of soil bacteria exposed to Cd and earthworm activity using generalised additive models. PLoS One 9(1):e85057. doi:10.1371/journal.pone.0085057

    Article  PubMed  PubMed Central  Google Scholar 

  • Myers-Smith IH, Forbes BC, Wilmking M, Hallinger M, Lantz T, Blok D, Tape KD, MacIas-Fauria M, Sass-Klaassen U, Lévesque E, Boudreau S, Ropars P, Hermanutz L, Trant A, Collier LS, Weijers S, Rozema J, Rayback SA, Schmidt NM, Schaepman-Strub G, Wipf S, Rixen C, Ménard CB, Venn S, Goetz S, Andreu-Hayles L, Elmendorf S, Ravolainen V, Welker J, Grogan P, Epstein HE, Hik DS (2011) Shrub expansion in tundra ecosystems: dynamics, impacts and research priorities. Environ Res Lett. doi:10.1088/1748-9326/6/4/045509

    Google Scholar 

  • Nogués-Bravo D, Araújo MB, Errea MP, Martínez-Rica JP (2007) Exposure of global mountain systems to climate warming during the 21st Century. Glob Environ Change 17:420–428. doi:10.1016/j.gloenvcha.2006.11.007

    Article  Google Scholar 

  • Nord EA, Lynch JP (2009) Plant phenology: a critical controller of soil resource acquisition. J Exp Bot 60:1927–1937. doi:10.1093/jxb/erp018

    Article  CAS  PubMed  Google Scholar 

  • Olsen SL, Töpper JP, Skarpaas O, Vandvik V, Klanderud K (2016) From facilitation to competition: temperature-driven shift in dominant plant interactions affects population dynamics in seminatural grasslands. Glob Change Biol 22:1915–1926. doi:10.1111/gcb.13241

    Article  Google Scholar 

  • Pettersson M, Bååth E (2003) Temperature-dependent changes in the soil bacterial community in limed and unlimed soil. FEMS Microbiol Ecol 45:13–21. doi:10.1016/S0168-6496(03)00106-5

    Article  CAS  PubMed  Google Scholar 

  • Piikki K, Temmerman LD, Högy P, Pleijel H (2008) The open-top chamber impact on vapour pressure deficit and its consequences for stomatal ozone uptake. Atmos Environ 42:6513–6522. doi:10.1016/j.atmosenv.2008.04.014

    Article  CAS  Google Scholar 

  • Pinheiro J, Bates D, DebRoy S, Sarkar D, R Core Team (2016) nlme: Linear and Nonlinear Mixed Effects Models. R package version 3.1-128

  • Pohland B, Owen B (2009) Biolog EcoPlates Standard Methods. TAS Technical Bulletin. Biology, Hayward, CA, USA. pp 1–3

  • Pornon A, Escaravage N, Lamaze T (2007) Complementarity in mineral nitrogen use among dominant plant species in a subalpine community. Am J Bot 94:1778–1785. doi:10.3732/ajb.94.11.1778

    Article  CAS  PubMed  Google Scholar 

  • Pugnaire FI, Zhang L, Li R, Luo T (2015) No evidence of facilitation collapse in the Tibetan plateau. J Veg Sci 26:233–242. doi:10.1111/jvs.12233

    Article  Google Scholar 

  • Rangwala I, Sinsky E, Miller JR (2013) Amplified warming projections for high altitude regions of the northern hemisphere mid-latitudes from CMIP5 models. Environ Res Lett 8:024040. doi:10.1088/1748-9326/8/2/024040

    Article  Google Scholar 

  • Richardson SJ, Press MC, Parsons AN, Hartley SE (2002) How do nutrients and warming impact on plant communities and their insect herbivores? A 9-year study from a sub-Arctic heath. J Ecol 90:544–556. doi:10.1046/j.1365-2745.2002.00681.x

    Article  Google Scholar 

  • Rinnan R, Stark S, Tolvanen A (2009) Responses of vegetation and soil microbial communities to warming and simulated herbivory in a subarctic heath. J Ecol 97:788–800. doi:10.1111/j.1365-2745.2009.01506.x

    Article  CAS  Google Scholar 

  • Ritz C, Streibig JC (2005) Bioassay analysis using R. J Stat Softw 12:1–22. doi:10.18637/jss.v012.i05

    Article  Google Scholar 

  • Ropars P, Boudreau S (2012) Shrub expansion at the forest-tundra ecotone: spatial heterogeneity linked to local topography. Environ Res Lett. doi:10.1088/1748-9326/7/1/015501

    Google Scholar 

  • Rundqvist S, Hedenås H, Sandström A, Emanuelsson U, Eriksson H, Jonasson C, Callaghan TV (2011) Tree and shrub expansion over the past 34 years at the tree-line near Abisko, Sweden. Ambio 40:683–692

    Article  PubMed  PubMed Central  Google Scholar 

  • Sarkar D (2008) Lattice: multivariate data visualization with R. Springer, New York

    Book  Google Scholar 

  • Schimel J, Schaeffer S (2012) Microbial control over carbon cycling in soil. Front Microbiol 3:348. doi:10.3389/fmicb.2012.00348

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sharkhuu A, Plante AF, Enkhmandal O, Casper BB, Helliker BR, Boldgiv B, Petraitis PS (2013) Effects of open-top passive warming chambers on soil respiration in the semi-arid steppe to taiga forest transition zone in Northern Mongolia. Biogeochemistry 115:333–348. doi:10.1007/s10533-013-9839-z

    Article  Google Scholar 

  • Shaver GR, Johnson LC, Cades DH, Murray G, Laundre JA, Rastetter EB, Nadelhoffer KJ, Giblin AE (1998) Biomass and CO2 flux in wet sedge tundras: responses to nutrients, temperature, and light. Ecol Monogr 68:75–97. doi:10.1890/0012-9615

    Google Scholar 

  • Shevtsova A, Haukioja E, Ojala A (1997) Growth response of subarctic dwarf shrubs, Empetrum nigrum and Vaccinium vitis-idaea, to manipulated environmental conditions and species removal. Oikos 78:440–458. doi:10.2307/3545606

    Article  Google Scholar 

  • Collins M, Knutti R, Arblaster J, Dufresne J-L, Fichefet T, Friedlingstein P, Gao X, Gutowski WJ, Johns T, Krinner G, Shongwe, M, Tebaldi C, Weaver AJ, Wehner W (2013) Long-term climate change: projections, commitments and irreversibility. In: Stocker TF, Quin D, Plattner G-K, Tignor M, Allen SK, Bosching J, Nauels A, Xia Y, Bex V, Midgley PM (eds) Climate change 2013: the physical science basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge University Press, Cambridge, pp 1029–1136

  • Streit K, Hagedorn F, Hiltbrunner D, Portmann M, Saurer M, Buchmann N, Wild B, Richter A, Wipf S, Siegwolf RTW (2014) Soil warming alters microbial substrate use in alpine soils. Glob Change Biol 20:1327–1338. doi:10.1111/gcb.12396

    Article  Google Scholar 

  • Sullivan PF, Welker JM (2005) Warming chambers stimulate early season growth of an arctic sedge: results of a minirhizotron field study. Oecologia 142:616–626. doi:10.1007/s00442-004-1764-3

    Article  PubMed  Google Scholar 

  • Taulavuori K, Laine K, Taulavuori E (2013) Experimental studies on Vaccinium myrtillus and Vaccinium vitis-idaea in relation to air pollution and global change at northern high latitudes: a review. Environ Exp Bot 87:191–196. doi:10.1016/j.envexpbot.2012.10.002

    Article  CAS  Google Scholar 

  • R Core Team (2015) R: a language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. ISBN 3-900051-07-0, URL http://www.R-project.org/

  • Tilman D, Lehman C (2001) Human-caused environmental change: impacts on plant diversity and evolution. Proc Natl Acad Sci 98:5433–5440. doi:10.1073/pnas.091093198

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Volder A, Bliss LC, Lambers H (2000) The influence of temperature and nitrogen source on growth and nitrogen uptake of two polar-desert species, Saxifraga caespitosa and Cerastium alpinum. Plant Soil 227:139–148. doi:10.1023/A:1026528830228

    Article  CAS  Google Scholar 

  • Wheeler JA, Schnider F, Sedlacek J, Cortés AJ, Wipf S, Hoch G, Rixen C (2015) With a little help from my friends: community facilitation increases performance in the dwarf shrub Salix herbacea. Basic Appl Ecol 16:202–209. doi:10.1016/j.baae.2015.02.004

    Article  Google Scholar 

  • Yang Y, Wang G, Klanderud K, Wang J, Liu G (2015) Plant community responses to five years of simulated climate warming in an alpine fen of the Qinghai-Tibetan Plateau. Plant Ecol Divers 8:211–218. doi:10.1080/17550874.2013.871654

    Article  Google Scholar 

  • Zuur AF, Ieno EN, Walker NJ, Saveliev AA, Smith GM (2009) Mixed effects models and extensions in ecology with R. Springer, New York

    Book  Google Scholar 

Download references

Acknowledgements

We thank Clara Borrull, Noelia Seguer, Estela Illa, Victoria Lafuente, Elena Lahoz and Santiago Pérez for their field and laboratory assistance. We are grateful to CCiT of the University of Barcelona for the use of their facilities and their technical assistance. This work was supported by Conselh Generau d’Aran and the project ARBALMONT/786-2012 (Organismo Autónomo Parques Nacionales, Ministerio de Agricultura, Alimentación y Medio Ambiente, Spain). AAR was funded by an FPU grant (Ministerio de Educación, Cultura y Deporte, Spain) and SP was funded by a Ramón y Cajal fellowship (RYC-2013-14164, Ministerio de Economía y Competitividad, Spain).

Author contribution statement

AAR, JMN, SP, OG and EC conceived and designed the experiments. AAR, JN and EC performed the experiments in the field. AAR, SP, MCS and EN performed laboratory analyses. AAR and EN analysed the data. AAR wrote the manuscript with the substantial advice, corrections and comments of SP, JMN, OG, EC, SN and EN. All the authors contributed to the discussion of the results.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alba Anadon-Rosell.

Ethics declarations

Conflict of interest

All authors declare that they have no conflict of interest.

Additional information

Communicated by John Dwyer.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 329 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Anadon-Rosell, A., Ninot, J.M., Palacio, S. et al. Four years of experimental warming do not modify the interaction between subalpine shrub species. Oecologia 183, 1167–1181 (2017). https://doi.org/10.1007/s00442-017-3830-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00442-017-3830-7

Keywords

Navigation