Skip to main content
Log in

Vaccinium myrtillus stands show similar structure and functioning under different scenarios of coexistence at the Pyrenean treeline

  • Published:
Plant Ecology Aims and scope Submit manuscript

Abstract

Plant–plant interactions are key drivers of treeline dynamics. At the Pyrenean treeline, the dwarf shrub Vaccinium myrtillus grows in pure stands or in mixed stands with Vaccinium uliginosum or Rhododendron ferrugineum. They form sparse shrub patches that colonize subalpine grasslands, having dramatic impacts on their structure and functioning. We investigated the role of the two co-occurring shrubs as possible modulators of the structure and performance of V. myrtillus in the Central Pyrenees. We analysed biomass, growth, functional parameters, age distribution, N and C concentrations and isotope compositions (δ15N and δ 13C) of V. myrtillus ramets in pure stands, and stands mixed with V. uliginosum or R. ferrugineum. Volume, above-ground biomass and age of the ramets did not differ between stand types. We found lower δ13C values, indicative of lower water-use efficiency (WUE), in leaves and shoots of V. myrtillus in stands with R. ferrugineum than in pure stands. The N content and δ15N of V. myrtillus leaves and shoots in pure stands were higher than in mixed stands, pointing to a competition for N in mixed stands. Our results indicate that V. myrtillus competes for nutrients with its neighbours, but neither this competition nor the lower WUE affect its above-ground performance. Therefore, the interaction with co-occurring shrubs does not have a major effect on V. myrtillus structure and functioning at treeline and, consequently, should not be considered as a key driver on the dynamics of this species in the encroachment of subalpine grasslands.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Abbreviations

IRMS:

Isotope ratio mass spectrometry

SPA:

Shoot photosynthetic area

TOM:

Total organic matter

δ13C:

Carbon isotope composition

δ15N:

Nitrogen isotope composition

References

  • Aerts R (1996) Nutrient resorption from senescing leaves of perennials: are there general patterns? J Ecol 84:597–608. doi:10.2307/2261481

    Article  Google Scholar 

  • Albert C, Thuiller W, Lavorel S, Davies ID, Garbolino E (2008) Land use change and sub-alpine tree dynamics: colonisation of Larix decidua in French sub-alpine grasslands. J Appl Ecol 45:659–669. doi:10.1111/j.1365-2664.2007.01416.x

    Article  Google Scholar 

  • Anadon-Rosell A, Rixen C, Cherubini P, Wipf S, Hagedorn F, Dawes MA (2014) Growth and phenology of three dwarf shrub species in a six-year soil warming experiment at the alpine treeline. PLoS One. doi:10.1371/journal.pone.0100577

    PubMed  PubMed Central  Google Scholar 

  • Baptist F, Tcherkez G, Aubert S, Pontailler J-Y, Choler P, Nogués S (2009) 13C and 15N allocations of two alpine species from early and late snowmelt locations reflect their different growth strategies. J Exp Bot 60:2725–2735. doi:10.1093/jxb/erp128

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Baptist F, Secher-Fromell H, Viard-Cretat F, Aranjuelo I, Creme A, Desclos M, Laine P, Nogués S, Lavorel S (2013) Carbohydrate and nitrogen stores in Festuca paniculata under mowing explain dominance in subalpine grasslands. Plant Biol 15:395–404. doi:10.1111/j.1438-8677.2012.00652.x

    Article  CAS  PubMed  Google Scholar 

  • Batllori E, Gutiérrez E (2008) Regional treeline dynamics in response to global change in the Pyrenees. J Ecol 96:1275–1288. doi:10.1111/j.1365-2745.2008.01429.x

    Article  Google Scholar 

  • Batllori E, Blanco-Moreno JM, Ninot JM, Gutiérrez E, Carrillo E (2009a) Vegetation patterns at the alpine treeline ecotone: the influence of tree cover on abrupt change in species composition of alpine communities. J Veg Sci 20:814–825. doi:10.1111/j.1654-1103.2009.01085.x

    Article  Google Scholar 

  • Batllori E, Camarero JJ, Ninot JM, Gutiérrez E (2009b) Seedling recruitment, survival and facilitation in alpine Pinus uncinata treelines. Implications and potential responses to climate warming. Glob Ecol Biogeogr 18:460–472. doi:10.1111/j.1466-8238.2009.00464.x

    Article  Google Scholar 

  • Beltrán E, Valiente-Banuet A, Verdú M (2012) Trait divergence and indirect interactions allow facilitation of congeneric species. Ann Bot 110:1369–1376. doi:10.1093/aob/mcs089

    Article  PubMed  PubMed Central  Google Scholar 

  • Berry SC, Varney GT, Flanagan LB (1997) Leaf δ13C in Pinus resinosa trees and understory plants: variation associated with light and CO2 gradients. Oecologia 109:499–506. doi:10.1007/s004420050110

    Article  Google Scholar 

  • Bolòs O, Vigo J, Masalles RM, Ninot JM (2005) Flora manual dels Països Catalans. 3a ed. rev. i amp. Ed. Pòrtic SA, Barcelona

  • Brancaleoni L, Gerdol R (2006) Recovery of subalpine dwarf shrub heath after neighbour removal and fertilization. Plant Ecol 183:227–235. doi:10.1007/s11258-005-9020-4

    Article  Google Scholar 

  • Callaway RM, Walker LR (1997) Competition and facilitation: a synthetic approach to interactions in plant communities. Ecology 78:1958–1965. doi:10.1890/0012-9658(1997)078[1958:CAFASA]2.0.CO;2

    Article  Google Scholar 

  • Callaway RM, Pennings SC, Richards CL (2003) Phenotypic plasticity and interactions among plants. Ecology 84:1115–1128. doi:10.1890/0012-9658(2003)084[1115:PPAIAP]2.0.CO;2

    Article  Google Scholar 

  • Camarero JJ, Gutierrez E (2004) Pace and pattern of recent treeline dynamics: response of ecotones to climatic variability in the Spanish Pyrenees. Clim Change 63:181–200. doi:10.1023/B:CLIM.0000018507.71343.46

    Article  Google Scholar 

  • Carelli MLC, Fahl JI, Trivelin PCO, Queiroz-Voltan RB (1999) Carbon isotope discrimination and gas exchange in Coffea species grown under different irradiance regimes. Rev Bras Fisiol Veg 11:63–68

    Google Scholar 

  • Craine JM, Elmore AJ, Aidar MPM, Bustamante M, Dawson TE, Hobbie EA, Kahmen A, MacK MC, McLauchlan KK, Michelsen A, Nardoto GB, Pardo LH, Peñuelas J, Reich PB, Schuur EAG, Stock WD, Templer PH, Virginia RA, Welker JM, Wright IJ (2009) Global patterns of foliar nitrogen isotopes and their relationships with climate, mycorrhizal fungi, foliar nutrient concentrations, and nitrogen availability. New Phytol 183:980–992. doi:10.1111/j.1469-8137.2009.02917.x

    Article  CAS  PubMed  Google Scholar 

  • de Mendiburu F (2010) agricolae: Statistical Procedures for Agricultural Research. R package version 1.0-9. http://CRAN.R-project.org/package=agricolae

  • Didier L (2001) Invasion patterns of European larch and Swiss stone pine in subalpine pastures in the French Alps. For Ecol Manag 145:67–77. doi:10.1016/S0378-1127(00)00575-2

    Article  Google Scholar 

  • Duursma RA, Marshall JD (2006) Vertical canopy gradients in δ13C correspond with leaf nitrogen content in a mixed-species conifer forest. Trees 20:496–506. doi:10.1007/s00468-006-0065-3

    Article  Google Scholar 

  • Eldridge DJ, Bowker MA, Maestre FT, Roger E, Reynolds JR, Whitford WG (2011) Impacts of shrub encroachment on ecosystem structure and functioning: towards a global synthesis. Ecol Lett 14:709–722. doi:10.1111/j.1461-0248.2011.01630.x

    Article  PubMed  PubMed Central  Google Scholar 

  • Emmerton KS, Callaghan TV, Jones HE, Leake JR, Michelsen A, Read DJ (2001) Assimilation and isotopic fractionation of nitrogen by mycorrhizal and nonmycorrhizal subarctic plants. New Phytol 151:513–524. doi:10.1046/j.1469-8137.2001.00179.x

    Article  CAS  Google Scholar 

  • Evans JR (1989) Photosynthesis and nitrogen relationships in leaves of C3 plants. Oecologia 78:9–19. doi: 10.1007/BF00377192

    Article  Google Scholar 

  • Fajardo A, McIntire EJB (2011) Under strong niche overlap conspecifics do not compete but help each other to survive: facilitation at the intraspecific level. J Ecol 99:642–650. doi:10.1111/j.1365-2745.2010.01771.x

    Google Scholar 

  • Farquhar GD, O’Leary MH, Berry JA (1982) On the relationship between carbon isotope discrimination and the intercellular carbon dioxide concentration in leaves. Aust J Plant Physiol 9:121–137. doi:10.1071/PP9820121

    Article  CAS  Google Scholar 

  • Farquhar GD, Ehleringer JR, Hubick KT (1989) Carbon isotope discrimination and photosynthesis. Annu Rev Plant Phys 40:503–537. doi:10.1146/annurev.pp.40.060189.002443

    Article  CAS  Google Scholar 

  • Flower-Ellis JGK (1971) Age, structure and dynamics in stands of bilberry (Vaccinium myrtillus L.). Department of Forest Ecology and Forest Soils, Research Note 9. Royal College of Forestry, Stockholm

    Google Scholar 

  • Forseth IN, Wait DA, Casper BB (2001) Shading by shrubs in a desert system reduces the physiological and demographic performance of an associated herbaceous perennial. J Ecol 89:670–680. doi:10.1046/j.0022-0477.2001.00574.x

    Article  Google Scholar 

  • Gebauer G, Schulze ED (1991) Carbon and nitrogen isotope ratios in different compartments of a healthy and a declining Picea abies forest in the Fichtelgebirge, NE Bavaria. Oecologia 87:198–207. doi:10.1007/BF00325257

    Article  Google Scholar 

  • Gellrich M, Baur P, Robinson BH, Bebi P (2008) Combining classification tree analyses with interviews to study why sub-alpine grasslands sometimes revert to forest: a case study from the Swiss Alps. Agric Syst 96:124–138. doi:10.1016/j.agsy.2007.07.002

    Article  Google Scholar 

  • Gerdol R, Brancaleoni L, Menghini M, Marchesini R (2000) Response of dwarf shrubs to neighbour removal and nutrient addition and their influence on community structure in a subalpine heath. J Ecol 88:256–266. doi:10.1046/j.1365-2745.2000.00445.x

    Article  Google Scholar 

  • Ghashghaie J, Badeck F-W, Lanigan G, Nogués S, Tcherkez G, Deléens E, Cornic G, Griffiths H (2003) Carbon isotope fractionation during dark respiration and photorespiration in C3 plants. Phytochem Rev 2:145–161. doi:10.1023/B:PHYT.0000004326.00711.ca

    Article  CAS  Google Scholar 

  • Gómez-Aparicio L, Zamora R, Castro J, Hódar JA (2008) Facilitation of tree saplings by nurse plants: microhabitat amelioration or protection against herbivores? J Veg Sci 19:161–172. doi:10.3170/2008-8-18347

    Article  Google Scholar 

  • Grau O, Ninot JM, Blanco-Moreno JM, van Logtestijn RSP, Cornelissen JHC, Callaghan TV (2012) Shrub-tree interactions and environmental changes drive treeline dynamics in the Subarctic. Oikos 121:1680–1690. doi:10.1111/j.1600-0706.2011.20032.x

    Article  Google Scholar 

  • Grau O, Ninot JM, Cornelissen JC, Callaghan TV (2013) Similar tree seedling responses to shrubs and to simulated environmental changes at Pyrenean and subarctic treelines. Plant Ecol Divers 6:329–342. doi:10.1080/17550874.2013.810311

    Article  Google Scholar 

  • Gross K, Homlicher A, Weinreich A, Wagner E (1996) Effect of shade on stomatal conductance, net photosynthesis, photochemical efficiency and growth of oak saplings. Ann For Sci 53:279–290. doi:10.1051/forest:19960211

    Article  Google Scholar 

  • Gundale MJ, Hyodo F, Nilsson M-C, Wardle DA (2012) Nitrogen niches revealed through species and functional group removal in a boreal shrub community. Ecology 93:1695–1706. doi:10.1890/11-1877.1

    Article  PubMed  Google Scholar 

  • Hobbie EA, Macko SA, Williams M (2000) Correlations between foliar δ15N and nitrogen concentrations may indicate-plant-mycorrhizal interactions. Oecologia 122:273–283. doi:10.1007/PL00008856

    Article  Google Scholar 

  • Hothorn T, Bretz F, Westfall P (2008) Simultaneous inference in general parametric models. Biom J 50:346–363. doi:10.1002/bimj.200810425

    Article  PubMed  Google Scholar 

  • IPCC (2013) Climate change 2013: the physical science basis. In: Stocker TF, Qin D, Plattner G-K, Tignor M, Allen SK, Boschung J, Nauels A, Xia Y, Bex V, Midgley PM (eds) Contribution of Working Group I to the fifth assessment report of the intergovernmental panel on climate change. Cambridge University Press, Cambridge

  • Johnson PS, Johnson CL, West NE (1988) Estimation of phytomass for ungrazed crested wheatgrass plants using allometric equations. J Range Manag 41:421–425

    Article  Google Scholar 

  • Kaarlejärvi E, Baxter R, Hofgaard A, Hytteborn H, Khitun O, Molau U, Sjögersten S, Wookey P, Olofsson J (2012) Effects of warming on shrub abundance and chemistry drive ecosystem-level changes in a forest-tundra ecotone. Ecosystems 15:1219–1233. doi:10.1007/s10021-012-9580-9

    Article  Google Scholar 

  • Killingbeck KT (1996) Nutrients in senesced leaves: keys to the search for potential resorption and resorption proficiency. Ecology 77:1716–1727. doi:10.2307/2265777

    Article  Google Scholar 

  • Körner C (2003) Alpine plant life: functional plant ecology of high mountain ecosystems, 2nd edn. Springer, Berlin

    Book  Google Scholar 

  • Kranabetter JM, Simard SW, Guy RD, Coates KD (2010) Species patterns in foliar nitrogen concentration, nitrogen content and 13C abundance for understory saplings across light gradients. Plant Soil 327:389–401. doi:10.1007/s11104-009-0062-6

    Article  CAS  Google Scholar 

  • Kullman L (2005) Pine (Pinus sylvestris) treeline dynamics during the past millennium: a population study in west-central Sweden. Ann Bot Fenn 42:95–106

    Google Scholar 

  • Le Roux X, Bariac T, Sinoquet H, Genty B, Piel C, Mariotti A, Girardin C, Richard P (2001) Spatial distribution of leaf water-use efficiency and carbon isotope discrimination within an isolated tree crown. Plant Cell Environ 24:1021–1032. doi:10.1046/j.0016-8025.2001.00756.x

    Article  Google Scholar 

  • Lepik M, Liira J, Zobel K (2005) High shoot plasticity favours plant coexistence in herbaceous vegetation. Oecologia 145:465–474. doi:10.1007/s00442-005-0142-0

    Article  PubMed  Google Scholar 

  • Li X, Rennenberg H, Simon J (2015) Competition for nitrogen between Fagus sylvatica and Acer pseudoplatanus seedlings depends on soil nitrogen availability. Front Plant Sci 6:302. doi:10.3389/fpls.2015.00302

    PubMed  PubMed Central  Google Scholar 

  • Llambí LD, Puentes Aguilar J, García-Núñez C (2013) Spatial relations and population structure of a dominant tree along a treeline ecotone in the Tropical Andes: interactions at gradient and plant neighbourhood scales. Plant Ecol Divers 6:343–353. doi:10.1080/17550874.2013.810312

    Article  Google Scholar 

  • Maillette L (1988) Apparent commensalism among three Vaccinium species on a climatic gradient. J Ecol 76:877–888. doi:10.2307/2260579

    Article  Google Scholar 

  • Mallik AU, Pellissier F (2000) Effects of Vaccinium myrtillus on Spruce regeneration: testing the notion of coevolutionary significance of allelopathy. J Chem Ecol 26:2197–2209. doi:10.1023/A:1005528701927

    Article  CAS  Google Scholar 

  • Meehl GA, Stocker TF, Collins WD, Friedlingstein P, Gaye AT, Gregory JM, Kitoh A, Knutti R, Murphy JM, Noda A, Raper SCB, Watterson IG, Weaver AJ, Zhao Z-C (2007) Global climate projections. In: Solomon S, Qin D, Manning M, Chen Z, Marquis M, Averyt KB, Tignor M, Miller HL (eds) Climate change 2007: the physical science basis. Contribution of working group I to the fourth assessment report of the intergovernmental panel on climate change. Cambridge University Press, Cambridge

    Google Scholar 

  • Michelsen A, Jonasson S, Sleep D, Havström M, Callaghan TV (1996) Shoot biomass, δ13C, nitrogen and chlorophyll responses of two arctic dwarf shrubs to in situ shading, nutrient application and warming simulating climatic change. Oecologia 105:1–12. doi:10.1007/BF00328785

    Article  Google Scholar 

  • Michelsen A, Quarmby C, Sleep D, Jonasson S (1998) Vascular plant 15N natural abundance in heath and forest tundra ecosystems is closely correlated with presence and type of mycorrhizal fungi in roots. Oecologia 115:406–418. doi:10.1007/s004420050535

    Article  Google Scholar 

  • Mourelle C, Kellman M, Kwon L (2001) Light occlusion at forest edges: an analysis of tree architectural characteristics. For Ecol Manag 154:179–192. doi:10.1016/S0378-1127(00)00624-1

    Article  Google Scholar 

  • Muller O, Hirose T, Werger MJA, Hikosaka K (2011) Optimal use of leaf nitrogen explains seasonal changes in leaf nitrogen content of an understory evergreen shrub. Ann Bot 108:529–536. doi:10.1093/aob/mcr167

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Myers-Smith IH, Forbes BC, Wilmking M et al (2011) Shrub expansion in tundra ecosystems: dynamics, impacts and research priorities. Environ Res Lett. doi:10.1088/1748-9326/6/4/045509

    Google Scholar 

  • Ninot JM, Batllori E, Carrillo E, Carreras J, Casals P, Casas C, Grau O, Gutiérrez E, Montané F, Puente A (2011) Reforestación natural en el dominio de Pinus uncinata. In: Ramirez L, Asensio B (eds) Proyectos de investigación en Parques Nacionales: 2007–2010. Organismo Autónomo de Parques Nacionales, Madrid, pp 139–158

    Google Scholar 

  • Nogués S, Tcherkez G, Cornic G, Ghashghaie J (2004) Respiratory carbon metabolism following illumination in intact French bean leaves using 12C/13C labelling. Plant Physiol 136:3245–3254. doi:10.1104/pp.104.048470

    Article  PubMed  PubMed Central  Google Scholar 

  • Olsrud M, Melillo JM, Christensen TR, Michelsen A, Wallander H, Olsson PA (2004) Response of ericoid mycorrhizal colonization and functioning to global change factors. New Phytol 162:459–469. doi:10.1111/j.1469-8137.2004.01049.x

    Article  Google Scholar 

  • Palacio S, Millard P, Maestro M, Montserrat-Martí G (2007) Non-structural carbohydrates and nitrogen dynamics in Mediterranean sub-shrubs: an analysis of the functional role of overwintering leaves. Plant Biology 9:49–58. doi:10.1055/s-2006-924224

    Article  CAS  PubMed  Google Scholar 

  • Pinheiro J, Bates D, DebRoy S, Sarkar D, The R Core Team (2008) NLME: linear and nonlinear mixed effects models. R package version 3.1-89

  • Pornon A, Escaravage N, Lamaze T (2007) Complementarity in mineral nitrogen use among dominant plant species in a subalpine community. Am J Bot 94:1778–1785. doi:10.3732/ajb.94.11.1778

    Article  CAS  PubMed  Google Scholar 

  • Ritchie JC (1956) Vaccinium myrtillus L. J Ecol 44:291–299

    Article  Google Scholar 

  • Sarkar D (2008) Lattice: multivariate data visualization with R. Springer, New York

    Book  Google Scholar 

  • Schweingruber FH, Poschlod P (2005) Growth rings in herbs and shrubs: life span, age determination and stem anatomy. For Snow Landsc Res 79:195–415

    Google Scholar 

  • Shevtsova A, Ojala A, Neuvonen S, Vieno M, Haukioja E (1995) Growth and reproduction of dwarf shrubs in a subarctic plant community: annual variation and above-ground interactions with neighbours. J Ecol 83:263–275. doi:10.2307/2261565

    Article  Google Scholar 

  • Shevtsova A, Haukioja E, Ojala A (1997) Growth response of subarctic dwarf shrubs, Empetrum nigrum and Vaccinium vitis-idaea, to manipulated environmental conditions and species. Oikos 78:440–458. doi:10.2307/3545606

    Article  Google Scholar 

  • Smith WK, Germino MJ, Hancock TE, Johnson DM (2003) Another perspective on altitudinal limits of alpine timberlines. Tree Physiol 23:1101–1112. doi:10.1093/treephys/23.16.1101

    Article  PubMed  Google Scholar 

  • Stöcklin J, Körner C (1999) Recruitment and mortality of Pinus sylvestris near the arctic treeline: the role of climatic change and herbivory. Ecol Bull 47:168–177

    Google Scholar 

  • Tappeiner U, Cernusca A (1993) Alpine meadows and pastures after abandonment. Pirineos 141–142:97–118. doi:10.3989/pirineos.1993.v141-142.166

    Article  Google Scholar 

  • Targetti S, Staglianò N, Messeri A, Argenti G (2010) A state-and-transition approach to alpine grasslands under abandonment. iForest 3:44–51. doi:10.3832/ifor0525-003

    Article  Google Scholar 

  • Tasser E, Tappeiner U (2002) The impact of land-use changes in time and space on vegetation distribution in mountain areas. Appl Veg Sci 5:173–184. doi:10.1111/j.1654-109X.2002.tb00547.x

    Article  Google Scholar 

  • Tcherkez G, Hodges M (2008) How stable isotopes may help to elucidate primary nitrogen metabolism and its interaction with (photo)respiration in C3 leaves. J Exp Bot 59:1685–1693. doi:10.1093/jxb/erm115

    Article  CAS  PubMed  Google Scholar 

  • R Core Team (2012) R: a language and environment for statistical computing. R Foundation for Statistical Computing, Vienna. ISBN 3-900051-07-0. http://www.R-project.org/

  • van Kleunen M, Fisher M (2001) Adaptive evolution of plastic foraging responses in a clonal Plant. Ecology 82:3309–3319. doi:10.2307/2680154

    Article  Google Scholar 

  • Vander Kloet SP, Hill NM (2000) Bacca quo vadis: regeneration niche differences among seven sympatric Vaccinium species on headlands of Newfoundland. Seed Sci Res 10:89–97. doi:10.1017/S0960258500000106

    Google Scholar 

  • Vergutz L, Manzoni S, Porporato A, Novais RF, Jackson RB (2012) Global resorption efficiencies and concentrations of carbon and nutrients in leaves of terrestrial plants. Ecol Monogr 82:205–220. doi:10.1890/11-0416.1

    Article  Google Scholar 

  • Vicente-Serrano SM, Lasanta T, Romo A (2004) Analysis of spatial and temporal evolution of vegetation cover in the Spanish Central Pyrenees: role of human management. Environ Manag 34:802–818. doi:10.1007/s00267-003-0022-5

    Article  Google Scholar 

  • Walker MD, Wahren CH, Hollister RD, Henry GHR, Ahlquist LE, Alatalo JM, Bret-Harte MS, Calef MP, Callaghan TV, Carroll AB, Epstein HE, Jónsdóttir IS, Klein JA, Magnússon B, Molau U, Oberbauer SF, Rewa SP, Robinson CH, Shaver GR, Suding KN, Thompson CC, Tolvanen A, Totland Ø, Turner PL, Tweedie CE, Webber PJ, Wookey PA (2006) Plant community responses to experimental warming across the tundra biome. P Natl Acad Sci USA 103:1342–1346. doi:10.1073/pnas.0503198103

    Article  CAS  Google Scholar 

  • Wang L, Schjoerring JK (2012) Seasonal variation in nitrogen pools and 15N/13C natural abundances in different tissues of grassland plants. Biogeosciences 9:1583–1595. doi:10.5194/bg-9-1583-2012

    Article  CAS  Google Scholar 

  • Wilson S, Tilman D (1991) Components of plant competition along an experimental gradient of nitrogen availability. Ecology 72:1050–1065. doi:10.2307/1940605

    Article  Google Scholar 

  • Xu Z-F, Hu T-X, Wang K-Y, Zhang Y-B, Xian J-R (2009) Short-term responses of phenology, shoot growth and leaf traits of four alpine shrubs in a timberline ecotone to simulated global warming, Eastern Tibetan Plateau, China. Plant Species Biol 24:27–34. doi:10.1111/j.1442-1984.2009.00229.x

    Article  Google Scholar 

  • Zuur AF, Ieno EN, Walker NJ, Saveliev AA, Smith GM (2009) Mixed effects models and extensions in ecology with R. Springer, New York

    Book  Google Scholar 

Download references

Acknowledgments

We are especially grateful to Empar Carrillo, Oriol Grau, Marc Talavera, Claudia Arias and Elena Sánchez for their field and laboratory assistance, and to CCiT of the University of Barcelona for the use of their facilities and their technical assistance. We also thank Jonathan Mitchley for his comments and corrections in an early version of this work, Emilia Gutiérrez for the use of the sledge microtome and Fritz Schweingruber for his support in the research of bibliographical resources. AAR was funded by a grant provided by the Fundació Agustí Pedro i Pons and an FPU grant (Ministerio de Educación, Cultura y Deporte, Spain), and SP was funded by a Ramón y Cajal contract (RYC-2013-14164, Ministerio de Economía y Competitividad, Spain). This work has been partly funded by Conselh Generau d’Aran, the European Research Project OPTIMA and the projects CGL2011-26654 (Ministerio de Ciencia e Innovación, Spain) and ARBALMONT/786-2012 (Organismo Autónomo de Parques Nacionales, Ministerio de Agricultura, Alimentación y Medio Ambiente, Spain).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alba Anadon-Rosell.

Additional information

Communicated by Kun-Fang Cao.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 196 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Anadon-Rosell, A., Palacio, S., Nogués, S. et al. Vaccinium myrtillus stands show similar structure and functioning under different scenarios of coexistence at the Pyrenean treeline. Plant Ecol 217, 1115–1128 (2016). https://doi.org/10.1007/s11258-016-0637-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11258-016-0637-2

Keywords

Navigation