Skip to main content

Advertisement

Log in

Fire in the Amazon: impact of experimental fuel addition on responses of ants and their interactions with myrmecochorous seeds

  • Highlighted Student Research
  • Published:
Oecologia Aims and scope Submit manuscript

Abstract

The widespread clearing of tropical forests causes lower tree cover, drier microclimate, and higher and drier fuel loads of forest edges, increasing the risk of fire occurrence and its intensity. We used a manipulative field experiment to investigate the influence of fire and fuel loads on ant communities and their interactions with myrmecochorous seeds in the southern Amazon, a region currently undergoing extreme land-use intensification. Experimental fires and fuel addition were applied to 40 × 40-m plots in six replicated blocks, and ants were sampled between 15 and 30 days after fires in four strata: subterranean, litter, epigaeic, and arboreal. Fire had extensive negative effects on ant communities. Highly specialized cryptobiotic and predator species of the litter layer and epigaeic specialist predators were among the most sensitive, but we did not find evidence of overall biotic homogenization following fire. Fire reduced rates of location and transport of myrmecochorous seeds, and therefore the effectiveness of a key ecosystem service provided by ants, which we attribute to lower ant abundance and increased thermal stress. Experimental fuel addition had only minor effects on attributes of fire severity, and limited effects on ant responses to fire. Our findings indicate that enhanced fuel loads will not decrease ant diversity and ecosystem services through increased fire severity, at least in wetter years. However, higher fuel loads can still have a significant effect on ants from Amazonian rainforests because they increase the risk of fire occurrence, which has a detrimental impact on ant communities and a key ecosystem service they provide.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1a–d
Fig. 2a–d
Fig. 3a–f
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Andersen AN (1988) Immediate and longer term effects of fire on seed predation by ants in sclerophyllous vegetation in south eastern Australia. Aust J Ecol 13:285–293. doi:10.1111/j.1442-9993.1988.tb00976.x

    Article  Google Scholar 

  • Andersen AN (1995) A classification of Australian ant communities, based on functional groups which parallel plant life-forms in relation to stress and disturbance. J Biogeogr 22:15–29. doi:10.2307/2846070

    Article  Google Scholar 

  • Andersen AN, Majer JD (2004) Ants show the way down under: invertebrate as bioindicators in land management. Front Ecol Environ 2:291–298. doi:10.1890/1540-9295(2004)002[0292:ASTWDU]2.0.CO;2

    Article  Google Scholar 

  • Andersen AN, Morrison SC (1998) Myrmecochory in Australia’s seasonal tropics: effects of disturbance on distance dispersal. Aust J Ecol 23:483–491. doi:10.1111/j.1442-9993.1998.tb00756.x

    Article  Google Scholar 

  • Andersen AN, Parr CL, Lowe LM, Müller WJ (2007) Contrasting fire related resilience of ecologically dominant ants in tropical savannas of northern Australia. Divers Distrib 13:438–446. doi:10.1111/j.1472-4642.2007.00353.x

    Article  Google Scholar 

  • Andersen AN, Woinarski JCZ, Parr CL (2012) Savanna burning for biodiversity: fire management for faunal conservation in Australian tropical savannas. Austral Ecol 37:658–667. doi:10.1111/j.1442-9993.2011.02334.x

    Article  Google Scholar 

  • Andersen AN, Ribbons RR, Pettit M, Parr CL (2014) Burning for biodiversity: highly resilient ant communities respond only to strongly contrasting fire regimes in Australia’s seasonal tropics. J Appl Ecol. doi:10.1111/1365-2664.12307

    Google Scholar 

  • Anderson MJ (2001) A new method for non-parametric multivariate analysis of variance. Austral Ecol 26:32–46. doi:10.1111/j.1442-9993.2001.01070.pp.x

    Google Scholar 

  • Anderson MJ, Ellingsen KE, McArdle BH (2006) Multivariate dispersion as a measure of beta diversity. Ecol Lett 9:683–693. doi:10.1111/j.1461-0248.2006.00926.x

    Article  PubMed  Google Scholar 

  • Andrade RB, Barlow J, Louzada J, Vaz-de-Mello FZ, Silveira JM, Cochrane MA (2014) Tropical forest fires and biodiversity: dung beetle community and biomass responses in a northern Brazilian Amazon forest. J Insect Conserv 18:1097–1104. doi:10.1007/s10841-014-9719-4

    Article  Google Scholar 

  • Balch JK, Nepstad DC, Brando PM, Curran LM, Portela O, De Carvalho O, Lefebvre P (2008) Negative fire feedback in a transitional forest of southeastern Amazonia. Glob Chang Biol 14:2276–2287. doi:10.1111/j.1365-2486.2008.01655.x

    Article  Google Scholar 

  • Balch JK, Nepstad DC, Curran LM, Brando PM, Portela O, Guilherme P, Reuning-Scherer JD, de Carvalho O (2011) Size, species, and fire behavior predict tree and liana mortality from experimental burns in the Brazilian Amazon. For Ecol Manage 261:68–77. doi:10.1016/j.foreco.2010.09.029

    Article  Google Scholar 

  • Balch JK, Massad TJ, Brando PM, Nepstad DC, Curran LM (2013) Effects of high-frequency understorey fires on woody plant regeneration in southeastern Amazonian forests. Philos Trans R Soc B 368:20120157. doi:10.1098/rstb.2012.0157

    Article  Google Scholar 

  • Balch JK, Brando PM, Nepstad DC, Coe MT, Silvério D, Massad TJ, Davidson EA, Lefebvre P, Oliveira-Santos C, Rocha W (2015) The susceptibility of southeastern Amazon forests to fire: insights from a large-scale burn experiment. Bioscience 65:893–905. doi:10.1093/biosci/biv106

    Article  Google Scholar 

  • Barlow J, Peres CA (2006) Effects of single and recurrent wildfires on fruit production and large vertebrate abundance in a central Amazonian forest. Biodivers Conserv 15:985–1012. doi:10.1007/s10531-004-3952-1

    Article  Google Scholar 

  • Barlow J, Silveira JM (2009) The consequences of fire for the fauna of humid tropical forests. In: Cochrane MA (ed) Tropical fire ecology: climate change, land use, and ecosystem dynamics. Springer, Berlin, pp 543–556

    Chapter  Google Scholar 

  • Barlow J, Haugaasen T, Peres CA (2002) Effects of ground fires on understorey bird assemblages in Amazonian forests. Biol Conserv 105:157–169. doi:10.1016/S0006-3207(01)00177-X

    Article  Google Scholar 

  • Baselga A, Orme D, Villeger S, De Bortoli J, Leprieur F (2013) betapart: partitioning beta diversity into turnover and nestedness components. R package version 1.3

  • Bates D, Maechler M, Bolker B, Walker S, Christensen RHB, Singmann H, Dai B, Eigen C, Rcpp L (2014) Package lme4. R Foundation for Statistical Computing, Vienna

    Google Scholar 

  • Beaumont KP, Mackay DA, Whalen MA (2011) Interactions between ants and seeds of two myrmecochorous plant species in recently burnt and long-unburnt forest sites. Austral Ecol 36:767–778. doi:10.1111/j.1442-9993.2010.02215.x

    Article  Google Scholar 

  • Bond WJ, van Wilgen BW (1996) Fire and plants. Chapman and Hall, London

    Book  Google Scholar 

  • Bond WJ, Woodward FI, Midgley GF (2005) The global distribution of ecosystems in a world without fire. N Phytol 165:525–538. doi:10.1111/j.1469-8137.2004.01252.x

    Article  CAS  Google Scholar 

  • Bowman DM (2000) Australian rainforests: islands of green in a land of fire. Cambridge University Press, Cambridge

    Book  Google Scholar 

  • Bowman DM, Balch JK, Artaxo P, Bond WJ, Carlson JM, Cochrane MA, D’Antonio CM, DeFries RS, Doyle JC, Harrison SP (2009) Fire in the earth system. Science 324:481–484. doi:10.1126/science.1163886

    Article  CAS  PubMed  Google Scholar 

  • Brando PM, Nepstad DC, Balch JK, Bolker B, Christman MC, Coe M, Putz FE (2012) Fire-induced tree mortality in a Neotropical forest: the roles of bark traits, tree size, wood density and fire behavior. Glob Chang Biol 18:630–641. doi:10.1111/j.1365-2486.2011.02533.x

    Article  Google Scholar 

  • Brando PM, Balch JK, Nepstad DC, Morton DC, Putz FE, Coe MT, Silvério D, Macedo MN, Davidson EA, Nóbrega CC, Alencar A, Soares-Filho BS (2014) Abrupt increases in Amazonian tree mortality due to drought–fire interactions. Proc Natl Acad Sci USA 111:6347–6352. doi:10.1073/pnas.1305499111

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Brando PM, Oliveria-Santos C, Rocha W, Cury R, Coe MT (2016) Effects of experimental fuel additions on fire intensity and severity: unexpected carbon resilience of a Neotropical forest. Glob Change Biol. doi:10.1111/gcb.13172

    Google Scholar 

  • Cochrane MA (2001) Synergistic interactions between habitat fragmentation and fire in evergreen tropical forests. Conserv Biol 15:1515–1521. doi:10.1046/j.1523-1739.2001.01091.x

    Article  Google Scholar 

  • Cochrane MA, Schulze MD (1999) Fire as a recurrent event in tropical forests of the eastern Amazon: effects on forest structure, biomass, and species composition1. Biotropica 31:2–16. doi:10.1111/j.1744-7429.1999.tb00112.x

    Google Scholar 

  • Crawley MJ (2012) The R book, 2nd edn. Wiley, Chichester

    Book  Google Scholar 

  • DeBano LF (2000) The role of fire and soil heating on water repellency in wildland environments: a review. J Hydrol 231–232:195–206. doi:10.1016/S0022-1694(00)00194-3

    Article  Google Scholar 

  • Del Toro I, Ribbons RR, Pelini SL (2012) The little things that run the world revisited: a review of ant-mediated ecosystem services and disservices (Hymenoptera: Formicidae). Myrmecol News 17:133–146

    Google Scholar 

  • Delabie JH, Agosti D, Nascimento I (2000) Litter ant communities of the Brazilian Atlantic rain forest region. In: Agosti D, Majer J, Alonso L, Schultz T (eds) Sampling ground-dwelling ants: case studies from the world’s rain forests. Curtin University, Perth, pp 1–17

    Google Scholar 

  • Filgueiras BKC, Iannuzzi L, Leal IR (2011) Habitat fragmentation alters the structure of dung beetle communities in the Atlantic Forest. Biol Conserv 144:362–369. doi:10.1016/j.biocon.2010.09.013

    Article  Google Scholar 

  • Folgarait PJ (1998) Ant biodiversity and its relationship to ecosystem functioning: a review. Biodivers Conserv 7:1221–1244. doi:10.1023/a:1008891901953

    Article  Google Scholar 

  • Frizzo TLM, Campos RI, Vasconcelos HL (2012) Contrasting effects of fire on arboreal and ground-dwelling ant communities of a Neotropical savanna. Biotropica 44:254–261. doi:10.1111/j.1744-7429.2011.00797.x

    Article  Google Scholar 

  • Hansen MC, Stehman SV, Potapov PV, Loveland TR, Townshend JRG, DeFries RS, Pittman KW, Arunarwati B, Stolle F, Steininger MK, Carroll M, DiMiceli C (2008) Humid tropical forest clearing from 2000 to 2005 quantified by using multitemporal and multiresolution remotely sensed data. Proc Natl Acad Sci USA 105:9439–9444. doi:10.1073/pnas.0804042105

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Harrison XA (2014) Using observation-level random effects to model overdispersion in count data in ecology and evolution. Peer J 2:e616. doi:10.7717/peerj.616

    Article  PubMed  PubMed Central  Google Scholar 

  • Hoffmann BD, Andersen AN (2003) Responses of ants to disturbance in Australia, with particular reference to functional groups. Austral Ecol 28:444–464. doi:10.1046/j.1442-9993.2003.01301.x

    Article  Google Scholar 

  • Hoffmann WA, Adasme R, Haridasan M, de Carvalho MT, Geiger EL, Pereira MAB, Gotsch SG, Franco AC (2009) Tree topkill, not mortality, governs the dynamics of savanna–forest boundaries under frequent fire in central Brazil. Ecology 90:1326–1337. doi:10.1890/08-0741.1

    Article  PubMed  Google Scholar 

  • Hopkins B (1992) Ecological processes at the forest-savanna boundary. Nature and dynamics of forest-savanna boundaries. Chapman and Hall, London, pp 21–33

    Google Scholar 

  • Jiménez-Soto E, Philpott SM (2015) Size matters: nest colonization patterns for twig-nesting ants. Ecol Evol 5:3288–3298. doi:10.1002/ece3.1555

    Article  PubMed  PubMed Central  Google Scholar 

  • Kimuyu DM, Sensenig RL, Riginos C, Veblen KE, Young TP (2014) Native and domestic browsers and grazers reduce fuels, fire temperatures, and acacia ant mortality in an African savanna. Ecol Appl 24:741–749. doi:10.1890/13-1135.1

    Article  PubMed  Google Scholar 

  • Leal IR, Wirth R, Tabarelli M (2007) Seed dispersal by ants in the semi-arid Caatinga of north-east Brazil. Ann Bot 99:885–894. doi:10.1093/aob/mcm017

    Article  PubMed  PubMed Central  Google Scholar 

  • Leal IR, Filgueiras B, Gomes J, Iannuzzi L, Andersen A (2012) Effects of habitat fragmentation on ant richness and functional composition in Brazilian Atlantic forest. Biodivers Conserv 21:1687–1701. doi:10.1007/s10531-012-0271-9

    Article  Google Scholar 

  • Leal LC, Andersen AN, Leal IR (2014a) Anthropogenic disturbance reduces seed-dispersal services for myrmecochorous plants in the Brazilian Caatinga. Oecologia 174:173–181. doi:10.1007/s00442-013-2740-6

    Article  PubMed  Google Scholar 

  • Leal LC, Neto MCL, de Oliveira AFM, Andersen AN, Leal IR (2014b) Myrmecochores can target high-quality disperser ants: variation in elaiosome traits and ant preferences for myrmecochorous Euphorbiaceae in Brazilian Caatinga. Oecologia 174:493–500. doi:10.1007/s00442-013-2789-2

    Article  PubMed  Google Scholar 

  • Leal IR, Leal LC, Andersen AN (2015) The benefits of myrmecochory: a matter of stature. Biotropica 47:281–285. doi:10.1111/btp.12213

    Article  Google Scholar 

  • Levings SC (1983) Seasonal, annual, and among-site variation in the ground ant community of a deciduous tropical forest: some causes of patchy species distributions. Ecol Monogr 53:435–455. doi:10.2307/1942647

    Article  Google Scholar 

  • Mac Nally R (2002) Multiple regression and inference in ecology and conservation biology: further comments on identifying important predictor variables. Biodivers Conserv 11:1397–1401. doi:10.1023/A:1016250716679

    Article  Google Scholar 

  • Macedo MN, DeFries RS, Morton DC, Stickler CM, Galford GL, Shimabukuro YE (2012) Decoupling of deforestation and soy production in the southern Amazon during the late 2000s. Proc Natl Acad Sci USA 109:1341–1346. doi:10.1073/pnas.1111374109

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Majer JD, Orabi G, Bisevac L (2007) Ants (Hymenoptera: Formicidae) pass the bioindicator scorecard. Myrmecol News 10:69–76

    Google Scholar 

  • Massad TJ, Balch JK, Davidson EA, Brando PM, Mews CL, Porto P, Quintino RM, Vieira SA, Junior BHM, Trumbore SE (2013) Interactions between repeated fire, nutrients, and insect herbivores affect the recovery of diversity in the southern Amazon. Oecologia 172:219–229. doi:10.1007/s00442-012-2482-x

    Article  PubMed  Google Scholar 

  • McKinney ML, Lockwood JL (1999) Biotic homogenization: a few winners replacing many losers in the next mass extinction. Trends Ecol Evol 14:450–453. doi:10.1016/S0169-5347(99)01679-1

    Article  PubMed  Google Scholar 

  • Mestre LA, Cochrane MA, Barlow J (2013) Long-term changes in bird communities after wildfires in the central Brazilian Amazon. Biotropica 45:480–488. doi:10.1111/btp.12026

    Article  Google Scholar 

  • Nakagawa S, Schielzeth H (2013) A general and simple method for obtaining R 2 from generalized linear mixed-effects models. Methods Ecol Evol 4:133–142. doi:10.1111/j.2041-210x.2012.00261.x

    Article  Google Scholar 

  • Nepstad DC, Verssimo A, Alencar A, Nobre C, Lima E, Lefebvre P, Schlesinger P, Potter C, Moutinho P, Mendoza E (1999) Large-scale impoverishment of Amazonian forests by logging and fire. Nature 398:505–508. doi:10.1038/19066

    Article  CAS  Google Scholar 

  • Oksanen J, Blanchet FG, Kindt R, Oksanen MJ, Suggests M (2015) vegan: community ecology Package. R package version 2.2-1.:0-0

  • Olden JD, Poff NL (2003) Toward a mechanistic understanding and prediction of biotic homogenization. Am Nat 162:442–460. doi:10.1086/378212

    Article  PubMed  Google Scholar 

  • Parr CL, Andersen AN, Chastagnol C, Duffaud C (2007) Savanna fires increase rates and distances of seed dispersal by ants. Oecologia 151:33–41. doi:10.1007/s00442-006-0570-5

    Article  CAS  PubMed  Google Scholar 

  • Peres CA, Barlow J, Haugaasen T (2003) Vertebrate responses to surface wildfires in a central Amazonian forest. Oryx 37:97–109. doi:10.1017/S0030605303000188

    Article  Google Scholar 

  • Philpott SM, Perfecto I, Armbrecht I, Parr CL (2010) Ant diversity and function in disturbed and changing habitats. In: Lach L, Parr CL, Abbott KL (eds) Ant ecology. Oxford University Press, Oxford, New York

    Google Scholar 

  • R Core Team (2016) R: a language and environment for statistical computing, version 3.2.4. R Foundation for Statistical Computing, Vienna. http://www.R-project.org/

  • Ray D, Nepstad D, Moutinho P (2005) Micrometeorological and canopy controls of fire susceptibility in a forested amazon landscape. Ecol Appl 15:1664–1678. doi:10.1890/05-0404

    Article  Google Scholar 

  • Rocha W, Metcalfe DB, Doughty CE, Brando P, Silvério D, Halladay K, Nepstad DC, Balch JK, Malhi Y (2014) Ecosystem productivity and carbon cycling in intact and annually burnt forest at the dry southern limit of the Amazon rainforest (Mato Grosso, Brazil). Plant Ecol Divers 7:25–40. doi:10.1080/17550874.2013.798368

    Article  Google Scholar 

  • Silveira JM, Barlow J, Andrade RB, Mestre LA, Lacau S, Cochrane MA (2012) Responses of leaf-litter ant communities to tropical forest wildfires vary with season. J Trop Ecol 28:515–518. doi:10.1017/S026646741200051X

    Article  Google Scholar 

  • Silveira JM, Barlow J, Andrade RB, Louzada J, Mestre LA, Lacau S, Zanetti R, Numata I, Cochrane MA (2013) The responses of leaf litter ant communities to wildfires in the Brazilian Amazon: a multi-region assessment. Biodivers Conserv 22:513–529. doi:10.1007/s10531-012-0426-8

    Article  Google Scholar 

  • Silveira JM, Louzada J, Barlow J, Andrade R, Mestre L, Solar R, Lacau S, Cochrane MA (2015) A multi-taxa assessment of biodiversity change after single and recurrent wildfires in a Brazilian Amazon forest. Biotropica. doi:10.1111/btp.12267

    Google Scholar 

  • Silvério DV, Brando PM, Balch JK, Putz FE, Nepstad DC, Oliveira-Santos C, Bustamante MMC (2013) Testing the Amazon savannization hypothesis: fire effects on invasion of a Neotropical forest by native Cerrado and exotic pasture grasses. Philos Trans R Soc B 368:20120427. doi:10.1098/rstb.2012.0427

    Article  Google Scholar 

  • Soares-Filho BS, Nepstad DC, Curran LM (2006) Modelling conservation in the Amazon basin. Nature 440:520–523. doi:10.1038/nature04389

    Article  CAS  PubMed  Google Scholar 

  • Solar RRC, Barlow J, Ferreira J, Berenguer E, Lees AC, Thomson JR, Louzada J, Maués M, Moura NG, Oliveira VHF, Chaul JCM, Schoereder JH, Vieira ICG, Mac Nally R, Gardner TA (2015) How pervasive is biotic homogenization in human-modified tropical forest landscapes? Ecol Lett 18:1108–1118. doi:10.1111/ele.12494

    Article  PubMed  Google Scholar 

  • Swengel AB (2001) A literature review of insect responses to fire, compared to other conservation managements of open habitat. Biodivers Conserv 10:1141–1169. doi:10.1023/A:1016683807033

    Article  Google Scholar 

  • Tabarelli M, Peres CA, Melo FPL (2012) The ‘few winners and many losers’ paradigm revisited: emerging prospects for tropical forest biodiversity. Biol Conserv 155:136–140. doi:10.1016/j.biocon.2012.06.020

    Article  Google Scholar 

  • Therneau TM, Grambsch PM (2015) A package for survival analysis in S, version 2.38, http://CRAN.R-project.org/package=survival

  • Turnbull CL, Culver DC (1983) The timing of seed dispersal in Viola nuttallii: attraction of dispersers and avoidance of predators. Oecologia 59:360–365. doi:10.1007/BF00378862

    Article  Google Scholar 

  • Uhl C, Kauffman JB (1990) Deforestation, fire susceptibility, and potential tree responses to fire in the eastern Amazon. Ecology 71:437–449. doi:10.2307/1940299

    Article  Google Scholar 

  • Vasconcelos HL, Pacheco R, Silva RC, Vasconcelos PB, Lopes CT, Costa AN, Bruna EM (2009) Dynamics of the leaf-litter arthropod fauna following fire in a Neotropical woodland savanna. PLoS One 4:e7762. doi:10.1371/journal.pone.0007762

    Article  PubMed  PubMed Central  Google Scholar 

  • Walsh C, Mac Nally R, Walsh MC (2013) Package hier. part

  • Whelan RJ (1995) The ecology of fire. Cambridge University Press, Cambridge

    Google Scholar 

Download references

Acknowledgments

We thank M. Padilha for his field assistance, T. Reis and F. Nery for helping with ant sorting, and R. Jesus and J. Chaul for assisting with ant identification. I. Leal, J. Louzada, T. Sobrinho and two anonymous referees provided valuable comments. The fire experiment was conducted by the Instituto de Pesquisa Ambiental da Amazônia, and its staff provided field support. P. Brando and C. Oliveira-Santos provided fire data and information about the site. A. Maggi provided access to the field site and logistical support. This study was supported by the Gordon and Betty Moore Foundation, the National Science Foundation (Division of Environmental Biology grant 1146206), and Fundação de Amparo à Pesquisa do Estado de Minas Gerais (FAPEMIG). L. N. P. and R. R. C. S. are supported by Coordenação de Aperfeiçoamento de Pessoal de Nível Superior grants, M. L. B. M. is supported by FAPEMIG grants, and J. H. S. and L. N. P. (process 205659/2014-4) are supported by Conselho Nacional de Desenvolvimento Científico e Tecnológico grants.

Author contribution statement

L. N. P., M. L. B. M., R. R. C. S., R. I. C. and J. H. S. conceived and designed the experiments. L. N. P. and M. L. B. M. performed the experiments. L. N. P. and R. R. C. S. analyzed the data. L. N. P. and A. N. A. discussed the data and wrote the manuscript with input from all authors.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lucas N. Paolucci.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Statement of human and animal rights

All applicable institutional and/or national guidelines for the care and use of animals were followed. This article does not contain any studies on human participants performed by any of the authors.

Additional information

Communicated by Raphael Didham.

This study used a manipulative experiment to assess the impacts of fire on ant communities and ecosystem services that they provide in tropical forests. Although fire had variable effects, specialized taxa were particularly affected by fire. Changes in abundance, richness and foraging efficiency of the ant fauna reduced the rates of seed location and the transport of seed by ants, an important ecosystem service provided by these social insects. The widespread clearing and fragmentation of tropical forests increases the risk of fires and this study provides a framework to understand the effects of such disturbances for biodiversity and ecosystem services.

Electronic supplementary material

Below is the link to the Electronic supplementary material.

Supplementary material 1 (PDF 309 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Paolucci, L.N., Maia, M.L.B., Solar, R.R.C. et al. Fire in the Amazon: impact of experimental fuel addition on responses of ants and their interactions with myrmecochorous seeds. Oecologia 182, 335–346 (2016). https://doi.org/10.1007/s00442-016-3638-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00442-016-3638-x

Keywords

Navigation