Skip to main content

Advertisement

Log in

Geometry of nutrition in field studies: an illustration using wild primates

  • Physiological ecology - Original research
  • Published:
Oecologia Aims and scope Submit manuscript

Abstract

Nutritional geometry has shown the benefits of viewing nutrition in a multidimensional context, in which foraging is viewed as a process of balancing the intake and use of multiple nutrients. New insights into nutrient regulation have been generated in studies performed in a laboratory context, where accurate measures of amounts (e.g. eaten, converted to body mass, excreted) can be made and analysed using amounts-based nutritional geometry. In most field situations, however, proportional compositions (e.g. of foods, diets, faeces) are the only measures readily available, and in some cases are more relevant to the problem at hand. For this reason, a complementary geometric method was recently introduced for analysing multi-dimensional data on proportional compositions in nutritional studies, called the right-angled mixture triangle (RMT). We use literature data from field studies of primates to demonstrate how the RMT can provide insight into a variety of important concepts in nutritional ecology. We first compare the compositions of foods, using as an example primate milks collected in both the wild and the laboratory. We next compare the diets of different species of primates from the same habitat and of the same species (mountain gorillas) from two distinct forests. Subsequently, we model the relationships between the composition of gorilla diets in these two habitats and the foods that comprise these diets, showing how such analyses can provide evidence for active nutrient-specific regulation in a field context. We provide a framework to relate concepts developed in laboratory studies with field-based studies of nutrition.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Barboza PS, Parker KL, Hume ID (2009) Integrative wildlife nutrition. Springer, Berlin

    Book  Google Scholar 

  • Behmer ST, Joern A (2008) Coexisting generalist herbivores occupy unique nutritional feeding niches. Proc Natl Acad Sci USA 105:1977–1982

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Blumfield M, Hure A, Macdonald-Wicks LK, Smith R, Simpson SJ, Raubenheimer D, Collins C (2012) The association between the macronutrient content of maternal diet, adequacy of micronutrients during pregnancy. Nutrients 4:1958–1976

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Bowen SH, Lutz EV, Ahlgren MO (1995) Dietary protein and energy as determinants of food quality: trophic strategies compared. Ecology 76:899–907

    Article  Google Scholar 

  • Bryer MAH, Chapman CA, Rothman JM (2013) Diet and polyspecific associations affect spatial patterns among redtail monkeys (Cercopithecus ascanius). Behaviour 150:277–293

    Google Scholar 

  • Chambers PG, Simpson SJ, Raubenheimer D (1995) Behavioural mechanisms of nutrient balancing in Locusta migratoria. Anim Behav 50:1513–1523

    Article  Google Scholar 

  • Conklin-Brittain NL, Wrangham RW, Hunt KD (1998) Dietary response of chimpanzees and cercopithecines to seasonal variation in fruit abundance. II: macronutrients. Int J Primatol 19:971–998

    Article  Google Scholar 

  • Dearing MD, Schall JJ (1992) Testing models of optimal diet assembly by the generalist herbivorous lizard Cnemidophorus murinus. Ecology 73:845–858

    Article  Google Scholar 

  • DeGabriel JL, Moore BD, Felton AM, Ganzhorn JU, Stolter C, Wallis IR, Johnson CN, Foley WJ (2014) Translating nutritional ecology from the laboratory to the field: milestones in linking plant chemistry to population regulation in mammalian browsers. Oikos 123:298–308. doi:10.1111/j.1600-0706.2013.00727.x

    Article  Google Scholar 

  • Despland E, Noseworthy M (2006) How well do specialist feeders regulate nutrient intake? Evidence from a gregarious tree-feeding caterpillar. J Exp Biol 209:1301–1309

    Article  PubMed  Google Scholar 

  • Erlenbach JA, Rode KD, Raubenheimer D, Robbins CT (2014) Macronutrient optimization and energy maximization determine diets of brown bears. J Mammal 95:160–168

    Article  Google Scholar 

  • Fagan WF, Siemann E, Denno RF, Mitter C, Huberty AF, Woods HA, Elser JJ (2002) Nitrogen in insects: implications for trophic complexity and species diversification. Am Nat 160:784–802

    Article  PubMed  Google Scholar 

  • Felton AM, Felton A, Raubenheimer D, Simpson SJ, Foley WJ, Wood JT, Wallis IR, Lindenmayer DB (2009a) Protein content of diets dictates the daily energy intake of a free-ranging primate. Behav Ecol 20:685–690

    Article  Google Scholar 

  • Felton AM, Felton A, Wood JT, Foley WJ, Raubenheimer D, Wallis IR, Lindenmayer DB (2009b) Nutritional ecology of Ateles chamek in lowland Bolivia: how macronutrient balancing influences food choices. Int J Primatol 30:675–696

    Article  Google Scholar 

  • Ganas J, Robbins MM, Nkurunungi JB, Kaplin BA, Mcneilage A (2004) Dietary variability of mountain gorillas in Bwindi impenetrable national park, Uganda. Int J Primatol 25:1043–1072

    Article  Google Scholar 

  • Giri S, Aryal A, Koirala RK, Adhikari B, Raubenheimer D (2011) Feeding ecology and distribution of Himalayan serow (Capricornis thar) in Annapurna conservation area. Nepal World J Zool 6:80–85

    Google Scholar 

  • Gosby AK, Conigrave AD, Lau NS, Iglesias MA, Hall RM, Jebb SA, Brand-Miller JI, Caterson D, Raubenheimer D, Simpson SJ (2011) Testing protein leverage in lean humans: a randomised controlled experimental study. PLoS ONE 6:e25929

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Hadfield JD, Nakagawa S (2010) General quantitative genetic methods for comparative biology: phylogenies, taxonomies and multi-trait models for continuous and categorical characters. J Evol Biol 23:494–508

  • Hawlena D, Schmitz OJ (2010) Physiological stress as a fundamental mechanism linking predation to ecosystem functioning. Am Nat 176:537–556

    Article  PubMed  Google Scholar 

  • Hewson-Hughes AK, Hewson-Hughes VL, Miller AT, Hall SR, Simpson SJ, Raubenheimer D (2011) Geometric analysis of macronutrient selection in the adult domestic cat, Felis catus. J Exp Biol 214:1039–1051

    Article  PubMed  Google Scholar 

  • Hewson-Hughes AK, Hewson-Hughes VL, Colyer A, Miller AT, Hall SR, Raubenheimer D, Simpson SJ (2012) Consistent proportional macronutrient intake selected by adult domestic cats (Felis catus), despite variations in dietary macronutrient and moisture content of foods offered. J Comp Physiol B, pp 1–12

  • Hewson-Hughes AK, Hewson-Hughes VL, Colyer A, Miller AT, McGrane SJ, Hall SR, Butterwick RF, Simpson S (2013) Geometric analysis of macronutrient selection in breeds of the domestic dog, Canis lupus familiaris. Behav Ecol 24:293–304

    Article  PubMed Central  PubMed  Google Scholar 

  • Hinde K, Milligan LA (2011) Primate milk: proximate mechanisms and ultimate perspectives. Evol Anthr 20:9–23

    Article  Google Scholar 

  • Hyslop EJ (1980) Stomach contents analysis––a review of methods and their application. J Fish Biol 17:411–429

    Article  Google Scholar 

  • Jensen K, Mayntz D, Toft S, Clissold FJ, Hunt J, Raubenheimer D, Simpson SJ (2012) Optimal foraging for specific nutrients in predatory beetles. Proc R Soc Lond B 279:2212–2218

    Article  CAS  Google Scholar 

  • Johnson CA, Raubenheimer D, Rothman JM, Clarke D, Swedell L (2013) 30 Days in the life: daily nutrient balancing in a wild chacma baboon. PLoS ONE 8:e70383. doi:10.1371/journal.pone.0070383

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Kamler JF, Pope KL (2001) nonlethal methods of examining fish stomach contents. Rev Fish Sci 9:1–11

    Article  Google Scholar 

  • Kearney M, Simpson SJ, Raubenheimer D, Helmuth B (2010) Modelling the ecological niche from functional traits. Philos Trans R Soc Lond B 365:3469–3483

    Article  Google Scholar 

  • Kearney MR, Simpson SJ, Raubenheimer D, Kooijman SALM (2012) Balancing heat, water and nutrients under environmental change: a thermodynamic niche framework. Funct Ecol 4:950–966

    Google Scholar 

  • Klare U, Kamler JF, Macdonald DW (2011) A comparison and critique of different scat-analysis methods for determining carnivore diet. Mammal Rev 41:294–312

    Article  Google Scholar 

  • Lambert, JE (2010) Primate nutritional ecology: feeding biology and diet at ecological and evolutionary scales. In: Campbell C, Fuentes A, MacKinnon KC, Panger M, Bearder S (eds) Primates in Perspective, 2nd edn. Oxford University Press, Oxford

  • Lee KP, Simpson SJ, Clissold FJ, Brooks R, Ballard JWO, Taylor PW, Soran N, Raubenheimer D (2008) Lifespan and reproduction in drosophila: new insights from nutritional geometry. Proc Natl Acad Sci USA 105:2498–2503

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Machovsky-Capuska GE, Dwyer SL, Alley MR, Stockin KA, Raubenheimer D (2011) Evidence for fatal collisions and kleptoparasitism while plunge diving in Gannets. Ibis 153:631–635

    Article  Google Scholar 

  • Maklakov AA, Hall MD, Simpson SJ, Dessmann J, Clissold FJ, Zajitschek F, Lailvaux SP, Raubenheimer D, Bonduriansky R, Brooks RC (2009) Sex differences in nutrient-dependent reproductive ageing. Aging Cell 8:324–330

    Article  CAS  PubMed  Google Scholar 

  • Milligan LA (2010) Milk composition of captive tufted capuchins (Cebus apella). Am J Primatol 72:81–86

    Article  CAS  PubMed  Google Scholar 

  • National Research Council (2003) Nutrient requirements of nonhuman primates, 2nd edn. National Academic Press, Washington

    Google Scholar 

  • Nie Y, Zhang Z, Raubenheimer D, Elser JJ, Wei W, Wei F (2014) Obligate herbivory in an ancestrally carnivorous lineage: the giant panda and bamboo from the perspective of nutritional geometry. Funct Ecol. doi:10.1111/1365-2435.12302

    Google Scholar 

  • Paddack MJ, Cowen RK, Sponaugle S (2006) Grazing pressure of herbivorous coral reef fishes on low coral-cover reefs. Coral Reefs 25:461–472

    Article  Google Scholar 

  • Panthi S, Aryal A, Lord J, Adhikari B, Raubenheimer D (2012) Summer diet and habitat ecology of red panda (Ailurus fulgens fulgens) in Dhopatan hunting reserve. Nepal Zool Stud 51:701–709

    Google Scholar 

  • Parker KL (2003) Advances in the nutritional ecology of cervids at different scales. Ecoscience 10:395–411

    Google Scholar 

  • Petry MV, Fonseca VSD, Scherer AL (2007) Analysis of stomach contents from the black-browed albatross, Thalassarche melanophris, on the coast of Rio grande do sul, southern brazil. Polar Biol 30:321–325

    Article  Google Scholar 

  • Plumptre AJ (1995) The chemical composition of montane plants and its influence on the diet of large mammalian herbivores in the Pare National des Volcans, Rwanda. J Zool 235:323–337

    Article  Google Scholar 

  • Power ML, Verona C, Ruiz-Miranda CE, Oftedal OT (2008) The composition of milk from free-living common marmosets (Callithrix jacchus) in Brazil. Am J Primatol 70:78–83

    Article  PubMed  Google Scholar 

  • Raubenheimer D (2011) Toward a quantitative nutritional ecology: the right-angled mixture triangle. Ecol Monogr 81:407–427

    Article  Google Scholar 

  • Raubenheimer D, Jones SA (2006) Nutritional imbalance in an extreme generalist omnivore: tolerance and recovery through complementary food selection. Anim Behav 71:1253–1262

    Article  Google Scholar 

  • Raubenheimer D, Rothman JM (2013) The nutritional ecology of entomophagy in humans and other primates. Annu Rev Entomol 58:141–160

    Article  CAS  PubMed  Google Scholar 

  • Raubenheimer D, Simpson SJ (1993) The geometry of compensatory feeding in the locust. Anim Behav 45:953–964

    Article  Google Scholar 

  • Raubenheimer D, Simpson SJ (1997) Integrative models of nutrient balancing: application to insects and vertebrates. Nutr Res Rev 10:151–179

    Article  CAS  PubMed  Google Scholar 

  • Raubenheimer D, Simpson SJ (2006) The challenge of supplementary feeding: can geometric analysis help save the kakapo? Notornis 53:100–111

    Google Scholar 

  • Raubenheimer D, Mayntz D, Simpson SJ, Toft S (2007) Nutrient-specific compensation following overwintering diapause in a generalist predatory invertebrate: implications for intraguild predation. Ecology 88:2598–2608

    Article  PubMed  Google Scholar 

  • Raubenheimer D, Simpson SJ, Mayntz D (2009) Nutrition, ecology and nutritional ecology: toward an integrated framework. Funct Ecol 23:4–16

    Article  Google Scholar 

  • Raubenheimer D, Simpson SJ, Tait AH (2012) Match and mismatch: conservation physiology, nutritional ecology and the timescales of biological adaptation. Philos Trans R Soc Lond B 367:1628–1646

    Article  CAS  Google Scholar 

  • Raubenheimer D, Machovsky-Capuska GE, Gosby AK, Simpson S (2014) The nutritional ecology of obesity: from humans to companion animals. Br J Nutr. doi:10.1017/S0007114514002323

    Google Scholar 

  • Remis MJ (2000) Initial studies on the contributions of body size and gastrointestinal passage rates to dietary flexibility among gorillas. Am J Phys Anthropol 112:171–180

    Article  CAS  PubMed  Google Scholar 

  • Remis MJ, Dierenfeld ES (2004) Digesta passage, digestibility and behavior in captive gorillas under two dietary regimens. Int J Primatol 25:825–845

    Article  Google Scholar 

  • Robbins CT, Fortin JK, Rode KD, Farley SD, Shipley LA, Felicetti LA (2007) Optimizing protein intake as a foraging strategy to maximize mass gain in an omnivore. Oikos 116:1675–1682

    Article  Google Scholar 

  • Rode KD, Chapman CA, Mcdowell LR, Stickler C (2006) Nutritional correlates of population density across habitats and logging intensities in redtail monkeys (Cercopithecus ascanius). Biotropica 38:625–634

    Article  Google Scholar 

  • Rothman JM, Dierenfeld ES, Molina DO, Shaw AV, Hintz HF, Pell AN (2006) Nutritional chemistry of foods eaten by gorillas in Bwindi impenetrable national park, Uganda. Am J Primatol 68:675–691

    Article  CAS  PubMed  Google Scholar 

  • Rothman JM, Plumptre AJ, Dierenfeld ES, Pell AN (2007) Nutritional composition of the diet of the gorilla (Gorilla beringei): a comparison between two montane habitats. J Trop Ecol 23:673–682

    Article  Google Scholar 

  • Rothman JM, Dierenfeld ES, Hintz HF, Pell AN (2008) Nutritional quality of gorilla diets: consequences of age, sex, and season. Oecologia 155:111–122

    Article  PubMed  Google Scholar 

  • Rothman JM, Raubenheimer D, Chapman CA (2011) Nutritional geometry: gorillas prioritize non-protein energy while consuming surplus protein. Biol Lett 7:847–849

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Ruohonen K, Simpson SJ, Raubenheimer D (2007) A new approach to diet optimisation: a re-analysis using European whitefish (Coregonus lavaretus). Aquaculture 267:147–156

    Article  CAS  Google Scholar 

  • Saravanan S, Schrama JW, Figueiredo-Silva AC, Kaushik SJ, Verreth JAJ, Geurden I (2012) Constraints on Energy Intake in Fish: the Link between Diet Composition, Energy Metabolism, and Energy Intake in Rainbow Trout. PLoS ONE 7:e34743

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Schuckard R, Melville D, Cook W, Machovsky-Capuska GE (2012) Diet of the Australasian gannet (Morus serrator) at Farewell Spit, New Zealand. Notornis 59:66–70

    Google Scholar 

  • Shrader AM, Owen-Smith N, Ogutu JO (2006) How a mega-grazer copes with the dry season: food, nutrient intake rates by white rhinoceros in the wild. Funct Ecol 20:376–384

    Article  Google Scholar 

  • Simpson SJ, Raubenheimer D (1993) A multi-level analysis of feeding behaviour: the geometry of nutritional decisions. Philos Trans R Soc Lond B 342:381–402

    Article  Google Scholar 

  • Simpson SJ, Raubenheimer D (1997) The geometric analysis of macronutrient selection in the rat. Appetite 28:201–213

    Article  CAS  PubMed  Google Scholar 

  • Simpson SJ, Raubenheimer D (2005) Obesity: the protein leverage hypothesis. Obes Rev 6:133–142

    Article  CAS  PubMed  Google Scholar 

  • Simpson SJ, Raubenheimer D (2010) The nutritional geometry of aging. Springer, Berlin

    Google Scholar 

  • Simpson SJ, Raubenheimer D (2012) The nature of nutrition: a unifying framework from animal adaptation to human obesity. Princeton University Press, Princeton

    Google Scholar 

  • Simpson SJ, Batley R, Raubenheimer D (2003) Geometric analysis of macronutrient intake in humans: the power of protein? Appetite 41:123–140

    Article  CAS  PubMed  Google Scholar 

  • Simpson SJ, Raubenheimer D, Charleston MA, Clissold FJ (2010) Modelling nutritional interactions: from individuals to communities. Trends Ecol Evol 25:53–60

    Article  PubMed  Google Scholar 

  • Skibiel AL, Downing LM, Orr TJ, Hood WR (2013) The evolution of the nutrient composition of mammalian milks. J Anim Ecol 82:1254–1264

    Article  PubMed  Google Scholar 

  • Solon-Biet SM, Aisling CM, Ballard JWO, Ruohonen K, Wu LE, Cogger VC, Warren A (2014) The ratio of macronutrients, not caloric intake, dictates cardiometabolic health, aging, and longevity in ad libitum-fed mice. Cell Metab 19:418–430

    Article  CAS  PubMed  Google Scholar 

  • Sterner RW, Elser JJ (2002) Ecological stoichiometry: the biology of elements from molecules to the biosphere. Princeton University Press, Princeton

    Google Scholar 

  • Tait A, Raubenheimer D, Stockin KA, Merriman M, Machovsky-Capuska GE (2014) Nutritional geometry of gannets and the challenges in field studies. Mar Biol 12:2791–2801. doi:10.1007/s00227-014-2544-1

    Article  Google Scholar 

  • Van Soest PJ (1994) Nutritional ecology of the ruminant. Cornell University Press, Ithaca

    Google Scholar 

  • Westoby M (1974) An analysis of diet selection by large generalist herbivores. Am Nat 108:290–304

    Article  Google Scholar 

  • Whittier CA, Milligan LA, Nutter FB, Cranfield MR, Power ML (2010) Proximate composition of milk from free-ranging mountain gorillas (Gorilla beringei beringei). Zool Biol 29:1–10

    Google Scholar 

Download references

Acknowledgments

We are grateful to Dr Alistair Senior for assistance with the comparative analysis of primate milk compositions. This research was partially funded by Faculty of Veterinary Science Research Fund, The University of Sydney. D.R. is part-funded by Gravida, The National Research Centre for Growth and Development, New Zealand.

Conflict of interest

The authors declare that they have no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to David Raubenheimer.

Additional information

Communicated by Joanna E. Lambert.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Raubenheimer, D., Machovsky-Capuska, G.E., Chapman, C.A. et al. Geometry of nutrition in field studies: an illustration using wild primates. Oecologia 177, 223–234 (2015). https://doi.org/10.1007/s00442-014-3142-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00442-014-3142-0

Keywords

Navigation