Skip to main content

Advertisement

Log in

The role of habitat quality in fragmented landscapes: a conceptual overview and prospectus for future research

  • Conservation ecology - Original Paper
  • Published:
Oecologia Aims and scope Submit manuscript

Abstract

There is increasing empirical evidence that the quality of habitat patches (determined by either habitat degradation or natural heterogeneity in the quality of habitat) plays an important role in determining species distribution patterns and in regulating spatial dynamics in fragmented landscapes. However, to date, most of the debate has focused on whether or not to include habitat variables in fragmentation studies, and we still lack general conclusions as well as standard and robust research approaches. In this paper we show how a weak conceptualization of “patch quality” and the inappropriate choice of target surrogate variables (e.g., density is often used as an indicator of patch quality) have mainly produced case-specific results, rather than general conclusions. We then identify weaknesses in the inclusion of habitat quality measurements within fragmentation studies. In particular, we focus on: (1) the lack of appropriate experimental design, outlining how few studies have actually included a gradient of habitat quality in their sample; (2) the lack of fundamental information provided (e.g., lack of standard outputs), which in turn hampers the possibility of carrying out meta-analyses. We finally synthesize available knowledge from empirical studies and highlight the different conceptual frameworks needed for patch occupancy versus patch use studies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  • Adriaens D, Jacquemyn H, Honnay O, Hermy M (2009) Conservation of remnant populations of Colchicum autumnale: the relative importance of local habitat quality and habitat fragmentation. Acta Oecol 35:69–82

    Article  Google Scholar 

  • Anzures-Dadda A, Manson RH (2007) Patch- and landscape-scale effects on howler monkey distribution and abundance in rainforest fragments. Anim Conserv 10:69–76

    Article  Google Scholar 

  • Armstrong DP (2005) Integrating the metapopulation and habitat paradigms for understanding broad-scale declines of species. Conserv Biol 19:1402–1410

    Article  Google Scholar 

  • Arroyo-Rodriguez V, Mandujano S (2006) Forest fragmentation modifies habitat quality for Alouatta palliata. Int J Primatol 27:1079–1096

    Article  Google Scholar 

  • Betzholtz PE, Ehrig A, Lindeborg M, Dinnétz P (2007) Food plant density, patch isolation and vegetation height determine occurrence in a Swedish metapopulation of the marsh fritillary Euphydryas aurinia (Rottemburg, 1775) (Lepidoptera, Nymphalidae). J Insect Conserv 11:343–350

    Article  Google Scholar 

  • Boitani L, Falcucci A, Maiorano L, Rondinini C (2007) Ecological networks as conceptual frameworks or operational tools in conservation. Conserv Biol 21:1414–1422

    Article  PubMed  Google Scholar 

  • Crooks K, Sanjayan M (2006) Connectivity conservation: maintaining connections for nature. In: Crooks K, Sanjayan M (eds) Connectivity conservation. Cambridge University Press, Cambridge, pp 1–19

    Google Scholar 

  • Dennis RLH, Eales HT (1997) Patch occupancy in Coenonympha tullia (Muêller, 1764) (Lepidoptera: Satyrinae): Habitat quality matters as much as patch size and isolation. J Insect Conserv 1:167–176

    Article  Google Scholar 

  • Denoel M, Lehmann A (2006) Multi-scale effect of landscape processes and habitat quality on newt abundance: implications for conservation. Biol Conserv 130:495–504

    Article  Google Scholar 

  • DeWoody YD, Feng Z, Swihart RK (2005) Merging spatial and temporal structure within a metapopulation model. Am Nat 166:42–55

    Article  PubMed  Google Scholar 

  • Drielsma M, Ferrier S (2009) Rapid evaluation of metapopulation persistence in highly variegated landscapes. Biol Conserv 142:529–540

    Article  Google Scholar 

  • Fahrig L (2003) Effects of habitat fragmentation on biodiversity. Annu Rev Ecol Evol Syst 34:487–515

    Article  Google Scholar 

  • Falcucci A, Ciucci P, Maiorano L, Gentile L, Boitani L (2009) Assessing habitat quality for conservation using an integrated occurrence-mortality model. J Appl Ecol 46:600–609

    Article  Google Scholar 

  • Felton AM, Engstram LM, Felton A, Knott CD (2003) Orangutan population density, forest structure and fruit availability in hand-logged and unlogged peat swamp forests in West Kalimantan. Indonesia Biol Conserv 114:91–101

    Google Scholar 

  • Fischer J, Lindenmayer DB (2007) Landscape modification and habitat fragmentation: a synthesis. Glob Ecol Biogeogr 16:265–280

    Article  Google Scholar 

  • Fischer J, Lindenmayer DB, Fazey I (2004) Appreciating ecological complexity: habitat contours as a conceptual landscape model. Conserv Biol 18:1245–1253

    Article  Google Scholar 

  • Fleishman E, Ray C, Sjoêgren-Gulve P, Boggs CL, Murphy DD (2002) Assessing the roles of patch quality, area, and isolation in predicting metapopulation dynamics. Conserv Biol 16:706–716

    Article  Google Scholar 

  • Franken RJ, Hik DS (2004) Influence of habitat quality, patch size and connectivity on colonization and extinction dynamics of collared pikas Ochotona collaris. J Anim Ecol 73:889–896

    Article  Google Scholar 

  • Fred MS, Brommer JE (2003) Influence of habitat quality and patch size on occupancy and persistence in two populations of the Apollo butterfly (Parnassius apollo). J Insect Conserv 7:85–98

    Article  Google Scholar 

  • Griffen BD, Drake JM (2008) Effects of habitat quality and size on extinction in experimental populations. Proc R Soc B Biol 275:2251–2256

    Article  Google Scholar 

  • Grundel R, Pavlovic NB (2007) Resource availability, matrix quality, microclimate, and spatial pattern as predictors of patch use by the Karner blue butterfly. Biol Conserv 135:135–144

    Article  Google Scholar 

  • Guevara S, Laborde J, Sanchez G (1998) Are isolated remnant trees in pastures a fragmented canopy? Selbyana 19:34–43

    Google Scholar 

  • Gyllenberg M, Hanski I (1997) Habitat deterioration, habitat destruction, and metapopulation persistence in a heterogenous landscape. Theor Popul Biol 52:198–215

    Article  PubMed  Google Scholar 

  • Hall LS, Krausman PR, Morrison ML (1997) The habitat concept and a plea for standard terminology. Wildlife Soc Bull 25:173–182

    Google Scholar 

  • Hanski I, Gaggiotti O (eds) (2004) Ecology genetics and evolution of metapopulations. Elsevier, Burlington

    Google Scholar 

  • Hanski I, Moilanen A, Pakkala T, Kuussaari M (1996) The quantitative incidence function model and persistence of an endangered butterfly metapopulation. Conserv Biol 10:578–590

    Article  Google Scholar 

  • Harrison S, Bruna E (1999) Habitat fragmentation and large scale conservation: what do we know for sure? Ecography 22:225–232

    Article  Google Scholar 

  • Hazell D, Hero JM, Lindenmayer D, Cunningham R (2004) A comparison of constructed and natural habitat for frog conservation in an Australian agricultural landscape. Biol Conserv 119:61–71

    Article  Google Scholar 

  • Heisswolf A, Reichmann S, Poethke HJ, Schrader B, Obermaier E (2009) Habitat quality matters for the distribution of an endangered leaf beetle and its egg parasitoid in a fragmented landscape. J Insect Conserv 13:165–175

    Article  Google Scholar 

  • Hill D, Fasham M, Tucker G, Shewry M, Shaw P (2005) Handbook of biodiversity methods. Survey, evaluation and monitoring. Cambridge University Press, Cambridge

    Google Scholar 

  • Hodgson JA, Moilanen A, Thomas CD (2009a) Metapopulation responses to patch connectivity and quality are masked by successional habitat dynamics. Ecology 90:1608–1619

    Article  PubMed  Google Scholar 

  • Hodgson JA, Thomas CD, Wintle BA, Moilanen A (2009b) Climate change, connectivity and conservation decision making: back to basics. J Appl Ecol 46:964–969

    Article  Google Scholar 

  • Holland GJ, Bennett AF (2007) Occurrence of small mammals in a fragmented landscape: the role of vegetation heterogeneity. Wildl Res 34:387–397

    Article  Google Scholar 

  • Jaquiéry J, Guélat J, Broquet T, Berset-Brändli L, Pellegrini E, Moresi R, Hirzel AH, Perrin N (2008) Habitat-quality effects on metapopulation dynamics in greater white-toothed shrews, Crocidura russula. Ecology 89:2777–2785

    Article  PubMed  Google Scholar 

  • Johnson MD (2007) Measuring habitat quality: a review. Condor 109:489–504

    Article  Google Scholar 

  • Kawecki TD (2004) Ecological and evolutionary consequences of source-sink population dynamics. In: Hanski I, Gaggiotti O (eds) Ecology, genetics, and evolution of metapopulations. Elsevier, Amsterdam, pp 387–414

    Chapter  Google Scholar 

  • Kindvall O (1996) Habitat heterogeneity and survival in a bush cricket metapopulation. Ecology 77:207–214

    Article  Google Scholar 

  • Krauss J, Steffan-Dewenter I, Tscharntke T (2004) Landscape occupancy and local population size depends on host plant distribution in the butterfly Cupido minimus. Biol Conserv 120:359–365

    Article  Google Scholar 

  • Krauss J, Steffan-Dewenter I, Muêller CB, Tscharntke T (2005) Relative importance of resource quantity, isolation and habitat quality for landscape distribution of a monophagous butterfly. Ecography 28:465–474

    Article  Google Scholar 

  • Kuussaari M, Nieminen M, Hanski I (1996) An experimental study of migration in the Glanville fritillary butterfly Melitaea cinxia. J Anim Ecol 65:791–801

    Article  Google Scholar 

  • Lima SL, Zollner PA (1996) Towards a behavioral ecology of ecological landscapes. Trends Ecol Evol 11:131–135

    Article  Google Scholar 

  • Lindenmayer DB, Fischer J (2007) Tackling the habitat fragmentation panchreston. Trends Ecol Evol 22:127–132

    Article  PubMed  Google Scholar 

  • Lindenmayer D, Hobbs RJ, Montague-Drake R, Alexandra J, Bennett A, Burgman M, Cale P, Calhoun A, Cramer V, Cullen P, Driscoll D, Fahrig L, Fischer J, Franklin J, Haila Y, Hunter M, Gibbons P, Lake S, Luck G, MacGregor C, McIntyre S, Nally RM, Manning A, Miller J, Mooney H, Noss R, Possingham H, Saunders D, Schmiegelow F, Scott M, Simberloff D, Sisk T, Tabor G, Walker B, Wiens J, Woinarski J, Zavaleta E (2008) A checklist for ecological management of landscapes for conservation. Ecol Lett 11:78–91

    PubMed  Google Scholar 

  • Lloyd H (2008) Influence of within-patch habitat quality on high-Andean Polylepis bird abundance. Ibis 150:735–745

    Article  Google Scholar 

  • Luck GW, Daily GC (2003) Tropical countryside bird assemblages: richness composition and foraging differ by landscape context. Ecol Appl 13:235–247

    Article  Google Scholar 

  • Marsh DM, Trenham PC (2001) Metapopulation dynamics and amphibian conservation. Conserv Biol 15:40–49

    Google Scholar 

  • Matter SF, Ezzeddine M, Duermit E, Mashburn J, Hamilton R, Lucas T, Roland J (2009) Interactions between habitat quality and connectivity affect immigration but not abundance or population growth of the butterfly, Parnassius smintheus. Oikos 118:1461–1470

    Article  Google Scholar 

  • Moilanen A, Hanski I (1998) Metapopulation dynamics: effects of habitat quality and landscape structure. Ecology 79:2503–2515

    Article  Google Scholar 

  • Mortelliti A, Boitani L (2008) Interaction of food resources and landscape structure in determining the probability of patch use by carnivores in fragmented landscapes. Lands Ecol 23:285–298

    Article  Google Scholar 

  • Mortelliti A, Amori G, Annesi F, Boitani L (2009) Testing for the relative contribution of patch neighborhood, patch internal structure, and presence of predators and competitor species in determining distribution patterns of rodents in a fragmented landscape. Can J Zool 87:662–670

    Article  Google Scholar 

  • North A, Ovaskainen O (2007) Interactions between dispersal, competition, and landscape heterogeneity. Oikos 116:1106–1119

    Article  Google Scholar 

  • Ovaskainen O, Luoto M, Ikonen L, Rekola H, Meyke E, Kuussaari M (2008) An Empirical test of a diffusion model: predicting clouded apollo movements in a novel environment. Am Nat 171:610–619

    Article  PubMed  Google Scholar 

  • Peters RH (1991) A critique for ecology. Cambridge University Press, Cambridge

    Google Scholar 

  • Pöyry J, Paukkunen J, Heliölä J, Kuussaari M (2009) Relative contribution of local and regional factors to species richness and total density of butterflies and moths in semi-natural grasslands. Oecologia 160:577–587

    Article  PubMed  Google Scholar 

  • Pulliam HR (1988) Sources, sinks, and population regulation. Am Nat 132:1–652

    Article  Google Scholar 

  • Quinn G, Keough M (2002) Experimental design and data analysis for biologists. Cambridge University Press, Cambridge

    Google Scholar 

  • Rabasa G, Gutierrez D, Escudero A (2007) Metapopulation structure and habitat quality in modelling dispersal in the butterfly Iolana iolas. Oikos 116:793–806

    Article  Google Scholar 

  • Rabasa SG, Gutierrez D, Escudero A (2008) Relative importance of host plant patch geometry and habitat quality on the patterns of occupancy, extinction and density of the monophagous butterfly Iolana iolas. Oecologia 156:491–503

    Article  PubMed  Google Scholar 

  • Root KV (1998) Evaluating the effects of habitat quality, connectivity, and catastrophes on a threatened species. Ecol Appl 8:854–865

    Article  Google Scholar 

  • Runge JP, Runge MC, Nichols JD (2006) The role of local populations within a landscape context: defining and classifying sources and sinks. Am Nat 167:925–938

    Article  Google Scholar 

  • Santos T, Díaz JA, Pérez-tris J, Carbonell R, Tellería JL (2008) Habitat quality predicts the distribution of a lizard in fragmented woodlands better than habitat fragmentation. Anim Conserv 11:46–56

    Article  Google Scholar 

  • Schooley RL, Branch LC (2007) Spatial heterogeneity in habitat quality and cross-scale interactions in metapopulations. Ecosystems 10:846–853

    Article  Google Scholar 

  • Schooley RL, Wiens JA (2003) Finding habitat patches and directional connectivity. Oikos 102:559–570

    Article  Google Scholar 

  • Sergio F, Newton I (2003) Occupancy as a measure of territory quality. J Anim Ecol 72:857–865

    Article  Google Scholar 

  • Summerville KS, Crist TO (2004) Contrasting effects of habitat quantity and quality on moth communities in fragmented landscapes. Ecography 27:3–12

    Article  Google Scholar 

  • Swihart RK, Lusk JJ, Duchamp JE, Rizkalla CE, Moore JE (2006) The roles of landscape context, niche breadth, and range boundaries in predicting species responses to habitat alteration. Divers Distrib 12:277–287

    Article  Google Scholar 

  • Tabarelli M, Gascon C (2005) Lessons from fragmentation research: improving management and policy guidelines for biodiversity conservation. Conserv Biol 19:734–739

    Article  Google Scholar 

  • Taylor PD, Fahrig L, Henein K, Merriam G (1993) Connectivity is a vital element of landscape structure. Oikos 68:571–573

    Article  Google Scholar 

  • Taylor PD, Fahrig L, With KA (2006) Landscape connectivity: a return to the basics. In: Crooks K, Sanjayan M (eds) Connectivity conservation. Cambridge University Press, Cambridge, pp 29–43

    Google Scholar 

  • Thomas CD, Kunin WE (1999) The spatial structure of populations. J Anim Ecol 68:647–657

    Article  Google Scholar 

  • Thomas JA, Bourn NAD, Clarke RT, Stewart KE, Simcox DJ, Pearman GS, Curtis R, Goodger B (2001) The quality and isolation of habitat patches both determine where butterflies persist in fragmented landscapes. Proc R Soc B Biol 268:1791–1796

    Article  CAS  Google Scholar 

  • Van Horne B (1983) Density as a misleading indicator of habitat quality. J Wildl Manag 47:893–901

    Article  Google Scholar 

  • Verboom J, Schotman A, Opdam P, Metz JAJ (1991) European nuthatch metapopulations in a fragmented agricultural landscape. Oikos 61:149–156

    Article  Google Scholar 

  • Verbeylen G, Wauters LA. De Bruyn L, Matthysen E (2009) Woodland fragmentation affects space use of Eurasian red squirrels. Acta Oecol 35:94–103

    Google Scholar 

  • Virgos E (2001) Role of isolation and habitat quality in shaping species abundance: a test with badgers (Meles meles L.) in a gradient of forest fragmentation. J Biogeogr 28:381–389

    Article  Google Scholar 

  • Visconti P, Elkin C (2009) Using connectivity metrics in conservation planning: when does habitat quality matter? Divers Distrib 15:602–612

    Article  Google Scholar 

  • Wettstein W, Schmid B (1999) Conservation of arthropod diversity in montane wetlands effect of altitude, habitat quality and habitat fragmentation on butterflies and grasshoppers. J Appl Ecol 36:363–373

    Article  Google Scholar 

  • Wiens J (2001) The landscape context of dispersal. In: Clobert J, Danchin E, Dhondt AA, Nichols JD (eds) Dispersal. Oxford University Press, Oxford, pp 96–109

    Google Scholar 

  • Zheng C, Pennanen J, Ovaskainen O (2009) Modelling dispersal with diffusion and habitat selection: analytical results for highly fragmented landscapes. Ecol Model 220:1495–1505

    Article  Google Scholar 

Download references

Acknowledgments

Alessio Mortelliti was supported by a grant of the ARP Agenzia Regionale dei Parchi del Lazio to the CNR Institute for Ecosystem Studies while carrying out this work. Thanks to two anonymous referees that helped us improve a previous version of this manuscript; thanks to Christina Thwaites for language revision.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alessio Mortelliti.

Additional information

Communicated by Janne Sundell.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOC 166 kb)

Appendix 1: Quantitative definitions of habitat quality and source–sink habitats

Appendix 1: Quantitative definitions of habitat quality and source–sink habitats

  1. 1.

    Definition of the quality of a given habitat by Van Horne (1983):

    $$ Q_{{\text{j}}} = {\frac{{\left\{ {\left[ {\sum_{{x{\text{j}}}} \, n_{{x{\text{j}}}} \left( {l_{{\alpha {\text{j}}}} B_{{x{\text{j}}}} + \,P_{{x{\text{j}}}} } \right)} \right]/\sum_{{n_{{x{\text{j}}}} }} } \right\}\left( {1/a_{{\text{j}}} } \right)}}{{\sum_{{xi}} \left\{ {\left\{ {\left[ {\sum_{{xi}} \, n_{{xi}} \left( {l_{{\alpha I}} B_{{xi}} \, + \,P_{{xi}} } \right)} \right]/\sum_{{n_{{xi}} }} } \right\}\left( {1/a_{\sc{i}} } \right)} \right\}}}} $$
    (1)

Qj is the relative quality of habitat for a given species, B x is the fecundity of a x-year old, and l α is the probability that the offspring will survive to α, α being the first age of breeding. P is the probability of surviving from age x to age x + 1, n is the number of individuals in each of the i habitats being compared, and a is the area that includes all sampled individuals in the ith habitat.

  1. 2.

    Definition of source and sink habitats by Pulliam (1988)

$$ \lambda = P_{\text{A}} + P_{\text{j}} \beta ; $$
(2)

λ is the population growth rate of a given population in a given habitat; PA and Pj are the habitat specific survival rates of adults (A) and juveniles (J); β is the habitat specific per capita reproductive rate. In a source habitat λ > 1, while in a sink λ < 1. This definition assumes that populations are at equilibrium and that survival is measured from pre-breeding to pre-dispersal (not annually).

  1. 3.

    Definition of the contribution of a local subpopulation to the whole spatially structured population by Runge et al. (2006):

$$ C^{r} = \Upphi_{\text{A}}^{rr} + \sum_{r \ne s} \Upphi_{\text{A}}^{rs} + \beta^{r} \left( {\Upphi_{\text{j}}^{rr} + \sum \Upphi_{i}^{rs} } \right) $$
(3)

Cr is the contribution of a member of the focal subpopulation “r” to the spatially structured population; Φ rrA is the apparent survival of adults that remain in the subpopulation r; Φ rsA is the apparent survival of adults that emigrate to other subpopulations; βr is the number of juveniles per adult; Φ rrj is the apparent survival of juveniles that remain the subpopulation r, and Φ rsj is the apparent survival of juveniles that emigrate to other subpopulations. If Cr > 1, the focal subpopulation contributes more individuals than it loses via mortality and is a source. If Cr < 1, the focal subpopulation loses more animals to mortality than it contributes and is a sink.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mortelliti, A., Amori, G. & Boitani, L. The role of habitat quality in fragmented landscapes: a conceptual overview and prospectus for future research. Oecologia 163, 535–547 (2010). https://doi.org/10.1007/s00442-010-1623-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00442-010-1623-3

Keywords

Navigation