Skip to main content

Advertisement

Log in

VEGF: A potential target for hydrocephalus

  • Review
  • Published:
Cell and Tissue Research Aims and scope Submit manuscript

Abstract

Growth factors are primarily responsible for the genesis, differentiation and proliferation of cells and maintenance of tissues. Given the central role of growth factors in signaling between cells in health and in disease, it is understandable that disruption of growth factor-mediated molecular signaling can cause diverse phenotypic consequences including cancer and neurological conditions. This review will focus on the specific questions of enlarged cerebral ventricles and hydrocephalus. It is also well known that angiogenic factors, such as vascular endothelial growth factor (VEGF), affect tissue permeability through activation of receptors and adhesion molecules; hence, recent studies showing elevations of this factor in pediatric hydrocephalus led to the demonstration that VEGF can induce ventriculomegaly and altered ependyma when infused in animals. In this review, we discuss recent findings implicating the involvement of biochemical and biophysical factors that can induce a VEGF-mimicking effect in communicating hydrocephalus and pay particular attention to the role of the VEGF system as a potential pharmacological target in the treatment of some cases of hydrocephalus. The source of VEGF secretion in the cerebral ventricles, in periventricular regions and during pathologic events including hydrocephalus following hypoxia and hemorrhage is sought. The review is concluded with a summary of potential non-surgical treatments in preclinical studies suggesting several molecular targets including VEGF for hydrocephalus and related neurological disorders.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

Abbreviations

AD:

Alzheimer’s disease

AQP-4:

Aquaporin-4

BBB:

Blood–brain barrier

CP:

Choroid plexus

CNS:

Central nervous system

CSF:

Cerebrospinal fluid

E-, N-, P-cadherin:

Epithelial, neuronal, placental cadherin

GPCRs:

G protein-coupled receptors

Hyh:

Hy5-homolog, DNA binding/transcription factor

NPH:

Normal pressure hydrocephalus

VE-cadherin:

Vascular endothelial cadherin

VEGF:

Vascular endothelial growth factor

VEGFR2:

Vascular endothelial growth factor receptor 2

ZO-1:

Zonula occludin 1

References

  • Adams RD, Fisher CM, Hakim S, Ojemann RG, Sweet WH (1965) Symptomatic Occult Hydrocephalus with "Normal" Cerebrospinal-Fluid Pressure A Treatable Syndrome. N Engl J Med 273:117–126

    CAS  PubMed  Google Scholar 

  • Angst BD, Marcozzi C, Magee AI (2001) The cadherin superfamily: diversity in form and function. J Cell Sci 114:629–641

  • Aukland K, Reed RK (1993) Interstitial-lymphatic mechanisms in the control of extracellular fluid volume. Physiol Rev 73:1–78

    CAS  PubMed  Google Scholar 

  • Ballabh P, Xu H, Hu F, Braun A, Smith K, Rivera A, Lou N, Ungvari Z, Goldman SA, Csiszar A, Nedergaard M (2007) Angiogenic inhibition reduces germinal matrix hemorrhage. Nat Med 13:477–485

    CAS  PubMed  Google Scholar 

  • Barbera-Guillem E, Nyhus JK, Wolford CC, Friece CR, Sampsel JW (2002) Vascular endothelial growth factor secretion by tumor-infiltrating macrophages essentially supports tumor angiogenesis, and IgG immune complexes potentiate the process. Cancer Res 62:7042–7049

    CAS  PubMed  Google Scholar 

  • Barnes PJ, Karin M (1997) Nuclear factor-kappaB: a pivotal transcription factor in chronic inflammatory diseases. N Engl J Med 336:1066–1071

    CAS  PubMed  Google Scholar 

  • Bátiz LF, Páez P, Jiménez AJ, Rodríguez S, Wagner C, Pérez-Fígares JM, Rodríguez EM (2006) Heterogeneous expression of hydrocephalic phenotype in the hyh mice carrying a point mutation in alpha-SNAP. Neurobiol Dis 23:152–168

    PubMed  Google Scholar 

  • Bátiz LF, Jiménez AJ, Guerra M, Rodríguez-Pérez LM, Toledo CD, Vio K, Páez P, Pérez-Fígares JM, Rodríguez EM (2011) New ependymal cells are born postnatally in two discrete regions of the mouse brain and support ventricular enlargement in hydrocephalus. Acta Neuropathol 121:721–735

    PubMed  Google Scholar 

  • Benson DF, LeMay M, Patten DH, Rubens AB (1970) Diagnosis of normal-pressure hydrocephalus. N Engl J Med 283(12):609–615

    CAS  PubMed  Google Scholar 

  • Bergsneider M, Egnor MR, Johnston M, Kranz D, Madsen JR, McAllister JP 2nd, Stewart C, Walker ML, Williams MA (2006) What we don't (but should) know about hydrocephalus. J Neurosurg 104:157–159

    PubMed  Google Scholar 

  • Botfield H, Gonzalez AM, Abdullah O, Skjolding AD, Berry M, McAllister JP 2nd, Logan A (2013) Decorin prevents the development of juvenile communicating hydrocephalus. Brain 136(Pt 9):2842–2858

    PubMed  Google Scholar 

  • Browd SR, Ragel BT, Gottfried ON, Kestle JR (2006) Failure of cerebrospinal fluid shunts: part I: Obstruction and mechanical failure. Pediatr Neurol 34:83–92

    PubMed  Google Scholar 

  • Bryant DM, Mostov KE (2008) From cells to organs: building polarized tissue. Nat Rev Mol Cell Biol 9:887–901

    CAS  PubMed Central  PubMed  Google Scholar 

  • Carmeliet P (2005) Angiogenesis in life, disease and medicine. Nature 438(7070):932–936

    CAS  PubMed  Google Scholar 

  • Carter CS, Vogel TW, Zhang Q, Seo S, Swiderski RE, Moninger TO, Cassell MD, Thedens DR, Keppler-Noreuil KM, Nopoulos P, Nishimura DY, Searby CC, Bugge K, Sheffield VC (2012) Abnormal development of NG2 + PDGFR-α + neural progenitor cells leads to neonatal hydrocephalus in a ciliopathy mouse model. Nat Med 18:1797–1804

    CAS  PubMed Central  PubMed  Google Scholar 

  • Castañeyra-Ruiz L, González-Marrero I, González-Toledo JM, Castañeyra-Ruiz A, de Paz-Carmona H, Castañeyra-Perdomo A, Carmona-Calero EM (2013) Aquaporin-4 expression in the cerebrospinal fluid in congenital human hydrocephalus. Fluids Barriers CNS 10:18

    PubMed Central  PubMed  Google Scholar 

  • Chae TH, Kim S, Marz KE, Hanson PI, Walsh CA (2004) The hyh mutation uncovers roles for alpha Snap in apical protein localization and control of neural cell fate. Nat Genet 36:264–270

    CAS  PubMed  Google Scholar 

  • Chainani A, Hippensteel KJ, Kishan A, Garrigues NW, Ruch DS, Guilak F, Little D (2013) Multilayered electrospun scaffolds for tendon tissue engineering. Tissue Eng A 19:2594–2604

    CAS  Google Scholar 

  • Chang DJ, Lee N, Park IH, Choi C, Jeon I, Kwon J, Oh SH, Shin DA, Do JT, Lee DR, Lee H, Moon H, Hong KS, Daley GQ, Song J (2013) Therapeutic potential of human induced pluripotent stem cells in experimental stroke. Cell Transplant 22(8):1427–1440

    PubMed  Google Scholar 

  • Chen XL, Nam JO, Jean C, Lawson C, Walsh CT, Goka E, Lim ST, Tomar A, Tancioni I, Uryu S, Guan JL, Acevedo LM, Weis SM, Cheresh DA, Schlaepfer DD (2012) VEGF-induced vascular permeability is mediated by FAK. Dev Cell 22:146–157

    CAS  PubMed Central  PubMed  Google Scholar 

  • Chu SH, Feng DF, Ma YB, Zhang H, Zhu ZA, Li ZQ, Zhang ZH (2011) Expression of HGF and VEGF in the cerebral tissue of adult rats with chronic hydrocephalus after subarachnoid hemorrhage. Mol Med 4(5):785–791

    CAS  Google Scholar 

  • Copp AJ, Greene ND (2013) Neural tube defects–disorders of neurulation and related embryonic processes. Wiley Interdiscip Rev Dev Biol 2:213–227

    CAS  PubMed Central  PubMed  Google Scholar 

  • Craig CG, Tropepe V, Morshead CM, Reynolds BA, Weiss S, van der Kooy D (1996) In vivo growth factor expansion of endogenous subependymal neural precursor cell populations in the adult mouse brain. J Neurosci 16:2649–2658

    CAS  PubMed  Google Scholar 

  • Crews L, Wyss-Coray T, Masliah E (2004) Insights into the pathogenesis of hydrocephalus from transgenic and experimental animal models. Brain Pathol 14:312–316

    CAS  PubMed  Google Scholar 

  • Dandy WE (1919) Experimental hydrocephalus. Ann Surg 70(2):129–142

    CAS  PubMed Central  PubMed  Google Scholar 

  • Del Bigio MR (1995) The ependyma: a protective barrier between brain and cerebrospinal fluid. Glia 14:1–13

  • Del Bigio MR (2004) Cellular damage and prevention in childhood hydrocephalus. Brain Pathol 14(3):317–324

    PubMed  Google Scholar 

  • Del Bigio MR (2010) Ependymal cells: biology and pathology. Acta Neuropathol 119:55–73

    PubMed  Google Scholar 

  • Del Bigio MR, Enno TL (2008) Effect of hydrocephalus on rat brain extracellular compartment. Cerebrospinal Fluid Res 5:12

    PubMed Central  PubMed  Google Scholar 

  • Del Bigio MR, Slobodian I, Schellenberg AE, Buist RJ, Kemp-Buors TL (2011) Magnetic resonance imaging indicators of blood–brain barrier and brain water changes in young rats with kaolin-induced hydrocephalus. Fluids Barriers CNS 8:22

    PubMed Central  PubMed  Google Scholar 

  • Del Bigio MR, Khan OH, da Silva LL, Juliet PA (2012) Cerebral white matter oxidation and nitrosylation in young rodents with kaolin-induced hydrocephalus. J Neuropathol Exp Neurol 71:274–288

    PubMed  Google Scholar 

  • Deshpande A, Dombrowski SM, Leichliter A, Krajcir N, Zingales N, Inoue M, Schenk S, Fukamachi K, Luciano MG (2009) Dissociation between vascular endothelial growth factor receptor-2 and blood vessel density in the caudate nucleus after chronic hydrocephalus. J Cereb Blood Flow Metab 29:1806–1815

    CAS  PubMed  Google Scholar 

  • Di Curzio DL, Buist RJ, Del Bigio MR (2013) Reduced subventricular zone proliferation and white matter damage in juvenile ferrets with kaolin-induced hydrocephalus. Exp Neurol 248:112–128

    PubMed  Google Scholar 

  • Doetsch F, Petreanu L, Caille I, Garcia-Verdugo JM, Alvarez-Buylla A (2002) EGF converts transit-amplifying neurogenic precursors in the adult brain into multipotent stem cells. Neuron 36:1021–1034

    CAS  PubMed  Google Scholar 

  • Dombrowski SM, Schenk S, Leichliter A, Leibson Z, Fukamachi K, Luciano MG (2006) Chronic hydrocephalus-induced changes in cerebral blood flow: mediation through cardiac effects. J Cereb Blood Flow Metab 26(10):1298–1310

    PubMed  Google Scholar 

  • Donnini S, Solito R, Cetti E, Corti F, Giachetti A, Carra S, Beltrame M, Cotelli F, Ziche M (2010) Abeta peptides accelerate the senescence of endothelial cells in vitro and in vivo, impairing angiogenesis. FASEB J 24:2385–2395

    CAS  PubMed  Google Scholar 

  • Duhaime AC (2006) Evaluation and management of shunt infections in children with hydrocephalus. Clin Pediatr 45:705–713

    Google Scholar 

  • Eide PK, Park EH, Madsen JR (2010) Arterial blood pressure vs intracranial pressure in normal pressure hydrocephalus. Acta Neurol Scand 122:262–269

    CAS  PubMed  Google Scholar 

  • ENCODE Project Consortium, Bernstein BE, Birney E, Dunham I, Green ED, Gunter C, Snyder M (2012) An integrated encyclopedia of DNA elements in the human genome. Nature 489:57–74

    Google Scholar 

  • Feng X, Papadopoulos MC, Liu J, Li L, Zhang D, Zhang H, Verkman AS, Ma T (2009) Sporadic obstructive hydrocephalus in Aqp4 null mice. J Neurosci Res 87:1150–1155

    CAS  PubMed Central  PubMed  Google Scholar 

  • Ferrara N (2005) VEGF as a therapeutic target in cancer. Oncology 69(Suppl 3):11–16

    CAS  PubMed  Google Scholar 

  • Ferrara N (2010) Binding to the extracellular matrix and proteolytic processing: two key mechanisms regulating vascular endothelial growth factor action. Mol Biol Cell 21(5):687–690

    CAS  PubMed Central  PubMed  Google Scholar 

  • Filippidis AS, Kalani MY, Rekate HL (2011) Hydrocephalus and aquaporins: lessons learned from the bench. Childs Nerv Syst 27:27–33

    PubMed  Google Scholar 

  • Filippidis AS, Kalani MY, Rekate HL (2012) Hydrocephalus and aquaporins: the role of aquaporin-4. Acta Neurochir Suppl 113:55–58

    CAS  PubMed  Google Scholar 

  • Folkman J, Browder T, Palmblad J (2001) Angiogenesis research: guidelines for translation to clinical application. Thromb Haemost 86:23–33

    CAS  PubMed  Google Scholar 

  • Gavard J, Gutkind JS (2006) VEGF controls endothelial-cell permeability by promoting the beta-arrestin-dependent endocytosis of VE-cadherin. Nat Cell Biol 8:1223–1234

    CAS  PubMed  Google Scholar 

  • Gerdes JM, Katsanis N (2005) Microtubule transport defects in neurological and ciliary disease. Cell Mol Life Sci 62:1556–1570

  • Gurevich VV, Gurevich EV (2006) The structural basis of arrestin-mediated regulation of G-protein-coupled receptors. Pharmacol Ther 110:465–502

    CAS  PubMed Central  PubMed  Google Scholar 

  • Hakim S, Venegas JG, Burton JD (1976) The physics of the cranial cavity, hydrocephalus and normal pressure hydrocephalus: mechanical interpretation and mathematical model. Surg Neurol 5(3):187–210

    CAS  PubMed  Google Scholar 

  • Hameed MQ, Goodrich GS, Dhamne SC, Amandusson A, Hsieh TH, Mou D, Wang Y, Rotenberg A (2014) A rapid lateral fluid percussion injury rodent model of traumatic brain injury and post-traumatic epilepsy. Neuroreport (in press)

  • Harrigan MR, Ennis SR, Masada T, Keep RF (2002) Intraventricular infusion of vascular endothelial growth factor promotes cerebral angiogenesis with minimal brain edema. Neurosurgery 50:589–598

    PubMed  Google Scholar 

  • Heep A, Stoffel-Wagner B, Bartmann P, Benseler S, Schaller C, Groneck P, Obladen M, Felderhoff-Mueser U (2004) Vascular endothelial growth factor and transforming growth factor-beta1 are highly expressed in the cerebrospinal fluid of premature infants with posthemorrhagic hydrocephalus. Pediatr Res 56:768–774

    CAS  PubMed  Google Scholar 

  • Holmes K, Roberts OL, Thomas AM, Cross MJ (2007) Vascular endothelial growth factor receptor-2: structure, function, intracellular signalling and therapeutic inhibition. Cell Signal 19:2003–2012

    CAS  PubMed  Google Scholar 

  • Hong HK, Chakravarti A, Takahashi JS (2004) The gene for soluble N-ethylmaleimide sensitive factor attachment protein alpha is mutated in hydrocephaly with hop gait (hyh) mice. Proc Natl Acad Sci U S A 101:1748–1753

    CAS  PubMed Central  PubMed  Google Scholar 

  • Hubbard SR, Till JH (2000) Protein tyrosine kinase structure and function. Annu Rev Biochem 69:373–398

    CAS  PubMed  Google Scholar 

  • Huh MS, Todd MA, Picketts DJ (2009) SCO-ping out the mechanisms underlying the etiology of hydrocephalus. Physiology (Bethesda) 24:117–126

    CAS  Google Scholar 

  • Iliff JJ, Wang M, Zeppenfeld DM, Venkataraman A, Plog BA, Liao Y, Deane R, Nedergaard M (2013) Cerebral Arterial Pulsation Drives Paravascular CSF-Interstitial Fluid Exchange in the Murine Brain. J Neurosci 33:18190–18199

    CAS  PubMed Central  PubMed  Google Scholar 

  • Ingber DE (2002) Mechanical signaling and the cellular response to extracellular matrix in angiogenesis and cardiovascular physiology. Circ Res 91:877–887

    CAS  PubMed  Google Scholar 

  • Ingber DE (2006) Cellular mechanotransduction: putting all the pieces together again. FASEB J 20:811–827

    CAS  PubMed  Google Scholar 

  • Jiménez AJ, Tomé M, Páez P, Wagner C, Rodríguez S, Fernández-Llebrez P, Rodríguez EM, Pérez-Fígares JM (2001) A programmed ependymal denudation precedes congenital hydrocephalus in the hyh mutant mouse. J Neuropathol Exp Neurol 60:1105–1119

    PubMed  Google Scholar 

  • Johanson CE, Szmydynger-Chodobska J, Chodobski A, Baird A, McMillan P, Stopa EG (1999) Altered formation and bulk absorption of cerebrospinal fluid in FGF-2-induced hydrocephalus. Am J Physiol 277:R263–271

    CAS  PubMed  Google Scholar 

  • Johnston MG, Del Bigio MR, Drake JM, Armstrong D, Di Curzio DL, Bertrand J (2013) Pre- and post-shunting observations in adult sheep with kaolin-induced hydrocephalus. Fluids Barriers CNS 10:24

    PubMed Central  PubMed  Google Scholar 

  • Kerever A, Schnack J, Vellinga D, Ichikawa N, Moon C, Arikawa-Hirasawa E, Efird JT, Mercier F (2007) Novel extracellular matrix structures in the neural stem cell niche capture the neurogenic factor fibroblast growth factor 2 from the extracellular milieu. Stem Cells 25:2146–2157

    CAS  PubMed  Google Scholar 

  • Khan OH, McPhee LC, Moddemann LN, Del Bigio MR (2007) Calcium antagonism in neonatal rats with kaolin-induced hydrocephalus. J Child Neurol 22:1161–1166

    PubMed  Google Scholar 

  • Killer M, Arthur A, Al-Schameri AR, Barr J, Elbert D, Ladurner G, Shum J, Cruise G (2010) Cytokine and growth factor concentration in cerebrospinal fluid from patients with hydrocephalus following endovascular embolization of unruptured aneurysms in comparison with other types of hydrocephalus. Neurochem Res 35:1652–1658

    CAS  PubMed  Google Scholar 

  • Kim TK, Hemberg M, Gray JM, Costa AM, Bear DM, Wu J, Harmin DA, Laptewicz M, Barbara-Haley K, Kuersten S, Markenscoff-Papadimitriou E, Kuhl D, Bito H, Worley PF, Kreiman G, Greenberg ME (2010) Widespread transcription at neuronal activity-regulated enhancers. Nature 465:182–187

    CAS  PubMed Central  PubMed  Google Scholar 

  • Koehne P, Hochhaus F, Felderhoff-Mueser U, Ring-Mrozik E, Obladen M, Bührer C (2002) Vascular endothelial growth factor and erythropoietin concentrations in cerebrospinal fluid of children with hydrocephalus. Childs Nerv Syst 18:137–141

    PubMed  Google Scholar 

  • Kolosova NG, Vitovtov AO, Muraleva NA, Akulov AE, Stefanova NA, Blagosklonny MV (2013) Rapamycin suppresses brain aging in senescence-accelerated OXYS rats. Aging (Albany NY) 5:474–484

    CAS  Google Scholar 

  • Koyama E, Young B, Nagayama M, Shibukawa Y, Enomoto-Iwamoto M, Iwamoto M, Maeda Y, Lanske B, Song B, Serra R, Pacifici M (2007) Conditional Kif3a ablation causes abnormal hedgehog signaling topography, growth plate dysfunction, and excessive bone and cartilage formation during mouse skeletogenesis. Development 134:2159–2169

    CAS  PubMed Central  PubMed  Google Scholar 

  • Krishnamurthy S, Li J, Schultz L, McAllister JP II (2009) Intraventricular infusion of hyperosmolar dextran induces hydrocephalus: a novel animal model of hydrocephalus. Cerebrospinal Fluid Res 11(6):16

    Google Scholar 

  • Krishnamurthy S, Li J, Schultz L, Jenrow KA (2012) Increased CSF osmolarity reversibly induces hydrocephalus in the normal rat brain. Fluids Barriers CNS 9(1):13

    PubMed Central  PubMed  Google Scholar 

  • Kuhn HG, Winkler J, Kempermann G, Thal LJ, Gage FH (1997) Epidermal growth factor and fibroblast growth factor-2 have different effects on neural progenitors in the adult rat brain. J Neurosci 17:5820–5829

    CAS  PubMed  Google Scholar 

  • Lang B, Song B, Davidson W, MacKenzie A, Smith N, McCaig CD, Harmar AJ, Shen S (2006) Expression of the human PAC1 receptor leads to dose-dependent hydrocephalus-related abnormalities in mice. J Clin Invest 116:1924–1934

    CAS  PubMed Central  PubMed  Google Scholar 

  • Lee JH, Back DB, Park DH, Cha YH, Kang SH, Suh JK (2012a) Increased Vascular Endothelial Growth Factor in the Ventricular Cerebrospinal Fluid as a Predictive Marker for Subsequent Ventriculoperitoneal Shunt Infection : A Comparison Study among Hydrocephalic Patients. J Korean Neurol Assoc 51:328–333

    CAS  Google Scholar 

  • Lee C, Mitsialis SA, Aslam M, Vitali SH, Vergadi E, Konstantinou G, Sdrimas K, Fernandez-Gonzalez A, Kourembanas S (2012b) Exosomes mediate the cytoprotective action of mesenchymal stromal cells on hypoxia-induced pulmonary hypertension. Circulation 126:2601–2611

    CAS  PubMed Central  PubMed  Google Scholar 

  • Lopes Lda S, Slobodian I, Del Bigio MR (2009) Characterization of juvenile and young adult mice following induction of hydrocephalus with kaolin. Exp Neurol 219:187–196

    PubMed  Google Scholar 

  • Madsen JR, Egnor M, Zou R (2006) Cerebrospinal fluid pulsatility and hydrocephalus: the fourth circulation. Clin Neurosurg 53:48–52

    PubMed  Google Scholar 

  • Maharaj AS, Walshe TE, Saint-Geniez M, Venkatesha S, Maldonado AE, Himes NC, Matharu KS, Karumanchi SA, D'Amore PA (2008) VEGF and TGF-beta are required for the maintenance of the choroid plexus and ependyma. J Exp Med 205:491–501

    CAS  PubMed Central  PubMed  Google Scholar 

  • Manaenko A, Lekic T, Barnhart M, Hartman R, Zhang JH (2014) Inhibition of Transforming Growth Factor-β Attenuates Brain Injury and Neurological Deficits in a Rat Model of Germinal Matrix Hemorrhage. Stroke 45(3):828–834

    CAS  PubMed  Google Scholar 

  • McAllister JP 2nd (2012) Pathophysiology of congenital and neonatal hydrocephalus. Semin Fetal Neonatal Med 17:285–294

    PubMed  Google Scholar 

  • McAllister JP 2nd, Miller JM (2010) Minocycline inhibits glial proliferation in the H-Tx rat model of congenital hydrocephalus. Cerebrospinal Fluid Res 27; 7:7

  • McMullen AB, Baidwan GS, McCarthy KD (2012) Morphological and behavioral changes in the pathogenesis of a novel mouse model of communicating hydrocephalus. PLoS ONE 7:e30159

    CAS  PubMed Central  PubMed  Google Scholar 

  • Mendelsohn AR, Larrick JW (2013) Sleep facilitates clearance of metabolites from the brain: glymphatic function in aging and neurodegenerative diseases. Rejuvenation Res 16:518–523

    CAS  PubMed  Google Scholar 

  • Ment LR, Schwartz M, Makuch RW, Stewart WB (1998) Association of chronic sublethal hypoxia with ventriculomegaly in the developing rat brain. Brain Res Dev Brain Res 111:197–203

    CAS  PubMed  Google Scholar 

  • Miki T, Shamma A, Kitajima S, Takegami Y, Noda M, Nakashima Y, Watanabe K, Takahashi C (2010) The ß1-integrin-dependent function of RECK in physiologic and tumor angiogenesis. Mol Cancer Res 8:665–676

    CAS  PubMed  Google Scholar 

  • Miller JW, Adamis AP, Shima DT, D'Amore PA, Moulton RS, O'Reilly MS, Folkman J, Dvorak HF, Brown LF, Berse B et al (1994) Vascular endothelial growth factor/vascular permeability factor is temporally and spatially correlated with ocular angiogenesis in a primate model. Am J Pathol 145:574–584

    CAS  PubMed Central  PubMed  Google Scholar 

  • Mirzadeh Z, Merkle FT, Soriano-Navarro M, Garcia-Verdugo JM, Alvarez-Buylla A (2008) Neural stem cells confer unique pinwheel architecture to the ventricular surface in neurogenic regions of the adult brain. Cell Stem Cell 3:265–278

    CAS  PubMed Central  PubMed  Google Scholar 

  • Mirzadeh Z, Han YG, Soriano-Navarro M, García-Verdugo JM, Alvarez-Buylla A (2010) Cilia organize ependymal planar polarity. J Neurosci 30:2600–2610

    CAS  PubMed Central  PubMed  Google Scholar 

  • Mitchison HM, Schmidts M, Loges NT, Freshour J, Dritsoula A, Hirst RA, O'Callaghan C, Blau H, Al Dabbagh M, Olbrich H, Beales PL, Yagi T, Mussaffi H, Chung EM, Omran H, Mitchell DR (2012) Mutations in axonemal dynein assembly factor DNAAF3 cause primary ciliary dyskinesia. Nat Genet 44(381–389):S1–2

    Google Scholar 

  • Monacci WT, Merrill MJ, Oldfield EH (1993) Expression of vascular permeability factor/vascular endothelial growth factor in normal rat tissues. Am J Physiol 264(4 Pt 1):C995–1002

    CAS  PubMed  Google Scholar 

  • Morales DM, Townsend RR, Malone JP, Ewersmann CA, Macy EM, Inder TE, Limbrick DD Jr (2012) Alterations in protein regulators of neurodevelopment in the cerebrospinal fluid of infants with posthemorrhagic hydrocephalus of prematurity. Mol Cell Proteomics 11, M111011973

    Google Scholar 

  • Moses MA, Harper J, Folkman J (2006) Doxycycline treatment for lymphangioleiomyomatosis with urinary monitoring for MMPs. N Engl J Med 354:2621–2622

    CAS  PubMed  Google Scholar 

  • Nagra G, Koh L, Aubert I, Kim M, Johnston M (2009) Intraventricular injection of antibodies to beta1-integrins generates pressure gradients in the brain favoring hydrocephalus development in rats. Am J Physiol Regul Integr Comp Physiol 297:R1312–1321

    CAS  PubMed  Google Scholar 

  • Naureen I, Waheed KA, Rathore AW, Victor S, Mallucci C, Goodden JR, Chohan SN, Miyan JA (2014) Fingerprint changes in CSF composition associated with different aetiologies in human neonatal hydrocephalus: inflammatory cytokines. Childs Nerv Syst (in press)

  • Nedergaard M (2013) Neuroscience Garbage truck of the brain. Science 340:1529–1530

    CAS  PubMed Central  PubMed  Google Scholar 

  • Niwa S, Nakajima K, Miki H, Minato Y, Wang D, Hirokawa N (2012) KIF19A is a microtubule-depolymerizing kinesin for ciliary length control. Dev Cell 23:1167–1175

    CAS  PubMed  Google Scholar 

  • Ohta H, Sato K, Murata N, Damirin A, Malchinkhuu E, Kon J, Kimura T, Tobo M, Yamazaki Y, Watanabe T, Yagi M, Sato M, Suzuki R, Murooka H, Sakai T, Nishitoba T, Im DS, Nochi H, Tamoto K, Tomura H, Okajima F (2003) Ki16425, a subtype-selective antagonist for EDG-family lysophosphatidic acid receptors. Mol Pharmacol 64:994–1005

    CAS  PubMed  Google Scholar 

  • Ortloff AR, Vío K, Guerra M, Jaramillo K, Kaehne T, Jones H, McAllister JP 2nd, Rodríguez E (2013) Role of the subcommissural organ in the pathogenesis of congenital hydrocephalus in the HTx rat. Cell Tissue Res 352:707–725

    CAS  PubMed  Google Scholar 

  • Park IH, Zhao R, West JA, Yabuuchi A, Huo H, Ince TA, Lerou PH, Lensch MW, Daley GQ (2008) Reprogramming of human somatic cells to pluripotency with defined factors. Nature 451(7175):141–146

    CAS  PubMed  Google Scholar 

  • Park EH, Dombrowski S, Luciano M, Zurakowski D, Madsen JR (2010) Alterations of pulsation absorber characteristics in experimental hydrocephalus. J Neurosurg Pediatr 6:159–170

    PubMed  Google Scholar 

  • Park EH, Eide PK, Zurakowski D, Madsen JR (2012) Impaired pulsation absorber mechanism in idiopathic normal pressure hydrocephalus: laboratory investigation. J Neurosurg 117:1189–1196

    PubMed  Google Scholar 

  • Peles E, Lidar Z, Simon AJ, Grossman R, Nass D, Ram Z (2004) Angiogenic factors in the cerebrospinal fluid of patients with astrocytic brain tumors. Neurosurgery 55:562–567

    PubMed  Google Scholar 

  • Pérez-Fígares JM, Jiménez AJ, Pérez-Martín M, Fernández-Llebrez P, Cifuentes M, Riera P, Rodríguez S, Rodríguez EM (1998) Spontaneous congenital hydrocephalus in the mutant mouse hyh Changes in the ventricular system and the subcommissural organ. J Neuropathol Exp Neurol 57:188–202

    PubMed  Google Scholar 

  • Poca MA, Sahuquillo J (2005) Short-term medical management of hydrocephalus. Expert Opin Pharmacother 6(9):1525–1538

    CAS  PubMed  Google Scholar 

  • Polacheck WJ, German AE, Mammoto A, Ingber DE, Kamm RD (2014) Mechanotransduction of fluid stresses governs 3D cell migration. Proc Natl Acad Sci U S A 111(7):2447–2452

    CAS  PubMed Central  PubMed  Google Scholar 

  • Putoux A, Thomas S, Coene KL, Davis EE, Alanay Y, Ogur G, Uz E, Buzas D, Gomes C, Patrier S, Bennett CL, Elkhartoufi N, Frison MH, Rigonnot L, Joyé N, Pruvost S, Utine GE, Boduroglu K, Nitschke P, Fertitta L, Thauvin-Robinet C, Munnich A, Cormier-Daire V, Hennekam R, Colin E, Akarsu NA, Bole-Feysot C, Cagnard N, Schmitt A, Goudin N, Lyonnet S, Encha-Razavi F, Siffroi JP, Winey M, Katsanis N, Gonzales M, Vekemans M, Beales PL, Attié-Bitach T (2011) KIF7 mutations cause fetal hydrolethalus and acrocallosal syndromes. Nat Genet 43:601–606

    CAS  PubMed Central  PubMed  Google Scholar 

  • Rashid S, McAllister JP II, Yu Y, Wagshul ME (2012) Neocortical capillary flow pulsatility is not elevated in experimental communicating hydrocephalus. J Cereb Blood Flow Metab 32(2):318–329

    PubMed Central  PubMed  Google Scholar 

  • Reddy GK, Bollam P, Caldito G (2013) Long-Term Outcomes of Ventriculoperitoneal Shunt Surgery in Patients with Hydrocephalus. World Neurosurg S1878–8750(13):00195–2

    Google Scholar 

  • Rekate HL (2009) A contemporary definition and classification of hydrocephalus. Semin Pediatr Neurol 16:9–15

    PubMed  Google Scholar 

  • Rodríguez EM, Guerra MM, Vío K, González C, Ortloff A, Bátiz LF, Rodríguez S, Jara MC, Muñoz RI, Ortega E, Jaque J, Guerra F, Sival DA, den Dunnen WF, Jiménez AJ, Domínguez-Pinos MD, Pérez-Fígares JM, McAllister JP, Johanson C (2012) A cell junction pathology of neural stem cells leads to abnormal neurogenesis and hydrocephalus. Biol Res 45:231–242

    PubMed  Google Scholar 

  • Satir P, Pedersen LB, Christensen ST (2010) The primary cilium at a glance. J Cell Sci 123:499–503

  • Segev Y, Metser U, Beni-Adani L, Elran C, Reider-Groswasser II, Constantini S (2001) Morphometric study of the midsagittal MR imaging plane in cases of hydrocephalus and atrophy and in normal brains. Am J Neuroradiol 22(9):1674–1679

    CAS  PubMed  Google Scholar 

  • Shay-Salit A, Shushy M, Wolfovitz E, Yahav H, Breviario F, Dejana E, Resnick N (2002) VEGF receptor 2 and the adherens junction as a mechanical transducer in vascular endothelial cells. Proc Natl Acad Sci U S A 99:9462–9467

    CAS  PubMed Central  PubMed  Google Scholar 

  • Shen Q, Wang Y, Kokovay E, Lin G, Chuang SM, Goderie SK, Roysam B, Temple S (2008) Adult SVZ stem cells lie in a vascular niche: a quantitative analysis of niche cell-cell interactions. Cell Stem Cell 3:289–300

    CAS  PubMed Central  PubMed  Google Scholar 

  • Shim JW, Elder SH (2006) Influence of cyclic hydrostatic pressure on fibrocartilaginous metaplasia of achilles tendon fibroblasts. Biomech Model Mechanobiol 5:247–252

    CAS  PubMed  Google Scholar 

  • Shim JW, Burgess SC, Elder SH (2007) Induction of Transdifferentiation in Pellet Cultured Tenocytes to Cartilaginous Phenotype under Cyclic Hydrostatic Pressure. IFMBE Proc 14:3302–3305

    Google Scholar 

  • Shim JW, Sandlund J, Han CH, Hameed MQ, Connors S, Klagsbrun M, Madsen JR, Irwin N (2013) VEGF, which is elevated in the CSF of patients with hydrocephalus, causes ventriculomegaly and ependymal changes in rats. Exp Neurol 247:703–709

    CAS  PubMed  Google Scholar 

  • Shulyakov AV, Buist RJ, Del Bigio MR (2012) Intracranial biomechanics of acute experimental hydrocephalus in live rats. Neurosurgery 71:1032–1040

    PubMed  Google Scholar 

  • Shworak N (2004) Angiogenic modulators in valve development and disease: does valvular disease recapitulate developmental signaling pathways? Curr Opin Cardiol 19:140–146

    PubMed  Google Scholar 

  • Silverberg GD, Mayo M, Saul T, Rubenstein E, McGuire D (2003) Alzheimer's disease, normal-pressure hydrocephalus, and senescent changes in CSF circulatory physiology: a hypothesis. Lancet Neurol 2:506–511

    PubMed  Google Scholar 

  • Simon TD, Riva-Cambrin J, Srivastava R, Bratton SL, Dean JM, Kestle JR, Network HCR (2008) Hospital care for children with hydrocephalus in the United States: utilization, charges, comorbidities, and deaths. J Neurosurg Pediatr 1:131–137

    PubMed  Google Scholar 

  • Sival DA, Guerra M, den Dunnen WF, Bátiz LF, Alvial G, Castañeyra-Perdomo A, Rodríguez EM (2011) Neuroependymal denudation is in progress in full-term human foetal spina bifida aperta. Brain Pathol 21:163–179

    CAS  PubMed  Google Scholar 

  • Somera KC, Jones HC (2004) Reduced subcommissural organ glycoprotein immunoreactivity precedes aqueduct closure and ventricular dilatation in H-Tx rat hydrocephalus. Cell Tissue Res 315:361–373

    CAS  PubMed  Google Scholar 

  • Sorokin SP (1968) Reconstructions of centriole formation and ciliogenesis in mammalian lungs. J Cell Sci 3:207–230

    CAS  PubMed  Google Scholar 

  • Stein SC, Guo W (2008) Have we made progress in preventing shunt failure? A critical analysis. J Neurosurg Pediatr 1:40–47

    PubMed  Google Scholar 

  • Sweger EJ, Casper KB, Scearce-Levie K, Conklin BR, McCarthy KD (2007) Development of hydrocephalus in mice expressing the G(i)-coupled GPCR Ro1 RASSL receptor in astrocytes. J Neurosci 27:2309–2317

    CAS  PubMed  Google Scholar 

  • Tada T, Zhan H, Tanaka Y, Hongo K, Matsumoto K, Nakamura T (2006) Intraventricular administration of hepatocyte growth factor treats mouse communicating hydrocephalus induced by transforming growth factor beta1. Neurobiol Dis 21:576–586

    CAS  PubMed  Google Scholar 

  • Tarnaris A, Toma AK, Pullen E, Chapman MD, Petzold A, Cipolotti L, Kitchen ND, Keir G, Lemieux L, Watkins LD (2011) Cognitive, biochemical, and imaging profile of patients suffering from idiopathic normal pressure hydrocephalus. Alzheimers Dement 7(5):501–508

    CAS  PubMed  Google Scholar 

  • Tavazoie M, Van der Veken L, Silva-Vargas V, Louissaint M, Colonna L, Zaidi B, Garcia-Verdugo JM, Doetsch F (2008) A specialized vascular niche for adult neural stem cells. Cell Stem Cell 3:279–288

    CAS  PubMed  Google Scholar 

  • Thiery JP, Sleeman JP (2006) Complex networks orchestrate epithelial-mesenchymal transitions. Nat Rev Mol Cell Biol 7:131–142

    CAS  PubMed  Google Scholar 

  • Tomita S, Ueno M, Sakamoto M, Kitahama Y, Ueki M, Maekawa N, Sakamoto H, Gassmann M, Kageyama R, Ueda N, Gonzalez FJ, Takahama Y (2003) Defective brain development in mice lacking the Hif-1alpha gene in neural cells. Mol Cell Biol 23:6739–6749

    CAS  PubMed Central  PubMed  Google Scholar 

  • Udo H, Yoshida Y, Kino T, Ohnuki K, Mizunoya W, Mukuda T, Sugiyama H (2008) Enhanced adult neurogenesis and angiogenesis and altered affective behaviors in mice overexpressing vascular endothelial growth factor 120. J Neurosci 28:14522–14536

    CAS  PubMed  Google Scholar 

  • van der Flier M, Hoppenreijs S, van Rensburg AJ, Ruyken M, Kolk AH, Springer P, Hoepelman AI, Geelen SP, Kimpen JL, Schoeman JF (2004) Vascular endothelial growth factor and blood–brain barrier disruption in tuberculous meningitis. Pediatr Infect Dis J 23:608–613

    PubMed  Google Scholar 

  • Wagshul ME, McAllister JP, Rashid S, Li J, Egnor MR, Walker ML, Yu M, Smith SD, Zhang G, Chen JJ, Benveniste H (2009) Ventricular dilation and elevated aqueductal pulsations in a new experimental model of communicating hydrocephalus. Exp Neurol 218:33–40

    CAS  PubMed  Google Scholar 

  • Wagshul ME, Eide PK, Madsen JR (2011) The pulsating brain: A review of experimental and clinical studies of intracranial pulsatility. Fluids Barriers CNS 8:5

    PubMed Central  PubMed  Google Scholar 

  • Wang Y, Maciejewski BS, Soto-Reyes D, Lee HS, Warburton D, Sanchez-Esteban J (2009) Mechanical stretch promotes fetal type II epithelial cell differentiation via shedding of HB-EGF and TGF-alpha. J Physiol 587:1739–1753

    CAS  PubMed Central  PubMed  Google Scholar 

  • Warner-Schmidt JL, Duman RS (2007) VEGF is an essential mediator of the neurogenic and behavioral actions of antidepressants. Proc Natl Acad Sci U S A 104:4647–4652

    CAS  PubMed Central  PubMed  Google Scholar 

  • Whitehead WE, Riva-Cambrin J, Wellons JC 3rd, Kulkarni AV, Holubkov R, Illner A, Oakes WJ, Luerssen TG, Walker ML, Drake JM, Kestle JR, Network HCR (2013) No significant improvement in the rate of accurate ventricular catheter location using ultrasound-guided CSF shunt insertion: a prospective, controlled study by the Hydrocephalus Clinical Research Network. J Neurosurg Pediatr 12:565–574

    PubMed  Google Scholar 

  • Whitelaw A, Jary S, Kmita G, Wroblewska J, Musialik-Swietlinska E, Mandera M, Hunt L, Carter M, Pople I (2010) Randomized trial of drainage, irrigation and fibrinolytic therapy for premature infants with posthemorrhagic ventricular dilatation: developmental outcome at 2 years. Pediatrics 125:e852–858

    PubMed  Google Scholar 

  • Williams MA, McAllister JP, Walker ML, Kranz DA, Bergsneider M, Del Bigio MR, Fleming L, Frim DM, Gwinn K, Kestle JR, Luciano MG, Madsen JR, Oster-Granite ML, Spinella G (2007) Priorities for hydrocephalus research: report from a National Institutes of Health-sponsored workshop. J Neurosurg 107:345–357

    PubMed  Google Scholar 

  • Wittko IM, Schänzer A, Kuzmichev A, Schneider FT, Shibuya M, Raab S, Plate KH (2009) VEGFR-1 regulates adult olfactory bulb neurogenesis and migration of neural progenitors in the rostral migratory stream in vivo. J Neurosci 29:8704–8714

    CAS  PubMed Central  PubMed  Google Scholar 

  • Wolburg H, Paulus W (2010) Choroid plexus: biology and pathology. Acta Neuropathol 119:75–88

    PubMed  Google Scholar 

  • Wyss-Coray T, Feng L, Masliah E, Ruppe MD, Lee HS, Toggas SM, Rockenstein EM, Mucke L (1995) Increased central nervous system production of extracellular matrix components and development of hydrocephalus in transgenic mice overexpressing transforming growth factor-beta 1. Am J Pathol 147:53–67

    CAS  PubMed Central  PubMed  Google Scholar 

  • Xie L, Kang H, Xu Q, Chen MJ, Liao Y, Thiyagarajan M, O'Donnell J, Christensen DJ, Nicholson C, Iliff JJ, Takano T, Deane R, Nedergaard M (2013) Sleep drives metabolite clearance from the adult brain. Science 342:373–377

    CAS  PubMed  Google Scholar 

  • Yang J, Dombrowski SM, Deshpande A, Krajcir N, Luciano MG (2010) VEGF/VEGFR-2 changes in frontal cortex, choroid plexus, and CSF after chronic obstructive hydrocephalus. J Neurol Sci 296:39–46

    CAS  PubMed Central  PubMed  Google Scholar 

  • Yung, YC, Mutoh, T, Lin, ME, Noguchi, K, Rivera, RR, Choi, JW, Kingsbury, MA, Chun, J (2011) Lysophosphatidic acid signaling may initiate fetal hydrocephalus. Sci Transl Med 3: 99ra87

  • Zou R, Park EH, Kelly EM, Egnor M, Wagshul ME, Madsen JR (2008) Intracranial pressure waves: characterization of a pulsation absorber with notch filter properties using systems analysis: laboratory investigation. J Neurosurg Pediatr 2:83–94

    PubMed  Google Scholar 

Download references

Acknowledgments

We thank Dr. Michael Klagsbrun and members of the Neurodynamics laboratory at Boston Children’s Hospital and Harvard Medical School for their comment and support. We appreciate comments by Dr. Roger D. Kamm at the Massachusetts Institute of Technology and support by Dr. Bonnie Blazer-Yost and Dr. Hiroki Yokota at the Indiana University Purdue University Indianapolis. We also thank Dr. Jenna Koschnitzky at The Hydrocephalus Association (HA) for critical reading of this manuscript. J.W.S. is a recipient of the HA mentored young investigator award. We also thank the Swedish Brain Foundation and Umeå University Hospital for their support to J.S. Numerous leading laboratories have contributed to the advancement of hydrocephalus research to understand the pathophysiology in pursuit of potential treatments. We apologize to those researchers whose work we are not citing here because of space limitation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Joseph R. Madsen.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shim, J.W., Sandlund, J. & Madsen, J.R. VEGF: A potential target for hydrocephalus. Cell Tissue Res 358, 667–683 (2014). https://doi.org/10.1007/s00441-014-1978-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00441-014-1978-6

Keywords

Navigation