Skip to main content

Advertisement

Log in

Intramyocardial injection of hypoxia-preconditioned adipose-derived stromal cells treats acute myocardial infarction: an in vivo study in swine

  • Regular Article
  • Published:
Cell and Tissue Research Aims and scope Submit manuscript

Abstract

Hypoxic preconditioning is a promising method for improving the anti-apoptotic and paracrine signaling capabilities of adipose-derived stromal cells (ADSCs). The purpose of this study was to analyze the influence of different hypoxic conditions on ADSCs and the therapeutic effects of hypoxia-preconditioned ADSCs (HPADSCs) on an animal model of myocardial infarction (MI). For the in vitro studies, ADSCs were divided into five groups and cultured in different oxygen concentrations (1, 3, 5, 10, and 21 %). After 24 h, RT-PCR and western blots showed that 3 % oxygen preconditioning could improve the viability and cytokine secretion of the ADSCs. A Matrigel assay indicated that the HPADSC-conditioned medium could stimulate endothelial cells to form capillary-like tubes. For the in vivo studies, MI was induced by coronary occlusion in 24 mature Chinese minipigs. The animals were divided into three groups and treated by intramyocardial injection with vehicle alone (saline group), with 1 × 108 ADSCs cultured in normoxic conditions (ADSCs group) or with 1 × 108 ADSCs precultured in 3 % oxygen (HPADSCs group). SPECT and echocardiography demonstrated that cardiac function was improved significantly in the HPADSC transplant group compared with the vehicle control group (P < 0.05). Immunofluorescence showed fewer apoptotic cells and more small- to medium-sized vessels in the HPADSC transplantation group (P < 0.05). Three percent oxygen is the optimum preconditioning treatment for ADSCs. HPADSC transplantation can prevent ventricular remodeling and reduce the infarct size.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Bagno LL, Werneck-de-Castro JP, Oliveira PF, Cunha-Abreu MS, Rocha NN, Kasai-Brunswick TH, Lago VM, Goldenberg RC, Campos-de-Carvalho AC (2012) Adipose-derived stromal cell therapy improves cardiac function after coronary occlusion in rats. Cell Transplant 21:1985–1996

    Article  PubMed  Google Scholar 

  • Bayes-Genis A, Soler-Botija C, Farre J, Sepulveda P, Raya A, Roura S, Prat-Vidal C, Galvez-Monton C, Montero JA, Buscher D, Izpisua Belmonte JC (2010) Human progenitor cells derived from cardiac adipose tissue ameliorate myocardial infarction in rodents. J Mol Cell Cardiol 49:771–780

    Article  PubMed  CAS  Google Scholar 

  • Bo K, Tian H, Prasongsukarn K, Wu J, Anqoulvant D, Wnendt S, Muhs A, Spitkovsky D, Li RK (2005) Cell transplantation improves ventricular function after a myocardial infarction: a preclinical study of human unrestricted somatic stem cells in a porcine model. Circulation 112(9 Suppl):I95–I104

    Google Scholar 

  • Bolli R (2000) The late phase of preconditioning. Circ Res 87:972–983

    Article  PubMed  CAS  Google Scholar 

  • Cencioni C, Capoqrossi MC, Napolitano M (2012) The SDF-1/CXCR4 axis in stem cell preconditioning. Cardiovasc Res 94:400–407

    Article  PubMed  CAS  Google Scholar 

  • Dib N, Menasche P, Bartunek JJ, Zeiher AM, Terzic A, Chronos NA, Henry TD, Peters NS, Fernandez-Aviles F, Yacoub M, Sanborn TA, Demaria A, Schatz RA, Taylor DA, Fuchs S, Itescu S, Miller LW, Dinsmore JH, Danqas GD, Popma JJ, Hall JL, Holmes DR Jr (2010) Recommendations for successful training on methods of delivery of biologics for cardiac regeneration: a report of the international society for cardiovascular translational research. J Am Coll Cardiol Intv 3:265–275

    Article  Google Scholar 

  • Efimenko A, Starostina E, Kalinina N et al (2011) Angiogenic properties of aged adiposed derived mesenchymal stem cells after hypoxic conditioning. J Transl Med 9:10

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Fraccarollo D, Galuppo P, Bauersachs J (2012) Novel therapeutic approaches to post-infarction remodeling. Cardiovasc Res 94:293–303

    Article  PubMed  CAS  Google Scholar 

  • Frangogiannis NG (2006) The mechanistic basis of infarct healing. Antioxid Redox Signal 8:1907–1939

    Article  PubMed  CAS  Google Scholar 

  • Frangogiannis NG, Smith CW, Entman ML (2002) The inflammatory response in myocardial infarction. Cardiovasc Res 53:31–47

    Article  PubMed  CAS  Google Scholar 

  • Freyman T, Polin G, Osman H, Crary J, Lu M, Cheng L, Palasis M, Wilensky RL (2006) A quantitative, randomized study evaluating three methods of mesenchymal stem cell delivery following myocardial infarction. Eur Heart J 27:1114–1122

    Article  PubMed  Google Scholar 

  • Fuchs S, Baffour R, Zhou YF, Shou M, Pierre A, Tio FO, Weissman NJ, Leon MB, Epstein SE, Kornowski R (2001) Transendocardial delivery of autologous bone marrow enhances collateral perfusion and regional function in swines with chronic experimental myocardial ischemia. J Am Coll Cardiol 37:1726–1732

    Article  PubMed  CAS  Google Scholar 

  • Galvez-Monton C, Prat-Vidal C, Roura S, Farre J, Soler-Botija C, Llucia-Valldeperas A, Diaz-Guemes I, Sanchez-Margallo FM, Aris A, Bayes-Genis A (2011) Transposition of a pericardial-derived vascular adipose flap for myocardial salvage after infarct. Cardiovasc Res 91:659–667

    Article  PubMed  CAS  Google Scholar 

  • Gnecchi M, Zhang Z, Ni A, Dzau VJ (2008) Paracrine mechanisms in adult stem cell signaling and therapy. Circ Res 103:1204–1219

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Hatzistergos KE, Quevedo H, Oskouei BN, Hu Q, Feigenbaum GS, Margitich IS, Mazhari R, Boyle AJ, Zambrano JP, Rodriguez JE, Dulce R, Pattany PM, Valdes D, Revilla C, Heldman AW, McNiece I, Hare JM (2010) Bone marrow mesenchymal stem cells stimulate cardiac stem cell proliferation and differentiation. Cir Res 107:913–922

    Article  CAS  Google Scholar 

  • Henning RJ, Burgos JD, Ondrovic L, Sanberg P, Balis J, Morqan MB (2006) Human umbilical cord blood progenitor cells are attracted to infarcted myocardium and significantly reduce myocardial infarction size. Cell Transplant 15:647–658

    Article  PubMed  Google Scholar 

  • Houtgraaf JH, den Dekker WK, van Dalen BM, Springeling T, de Jong R, van Geuns RJ, Geleijnse ML, Fernandez-Aviles F, Zijlsta F, Serruys PW, Duckers HJ (2012) First experience in humans using adipose tissue-derived regenerative cells in the treatment of patients with ST-segment elevation myocardial infarction. J Am Coll Cardiol 59:539–540

    Article  PubMed  Google Scholar 

  • Hu X, Yu SP, Fraser JL, Lu Z, Ogle ME, Wang JA, Wei L (2008) Transplantation of hypoxia-preconditioned mesenchymal stem cells improves infarcted heart function via enhanced survival of implanted cells and angiogenesis. J Thorac Cardiovasc Surg 135:799–808

    Article  PubMed  CAS  Google Scholar 

  • Jammel MN, Li Q, Mansoor A, Qiang X, Sarver A, Wang X, Swingen C, Zhang J (2010) Long term functional improvement and gene expression changes after bone marrow-derived multipotent progenitor cell transplantation in myocardial infarctio. Am J Physiol Heart Circ Physiol 298:H1348–H1356

    Article  Google Scholar 

  • Kim B-O, Tian H, Prasongsukarn K, Jun W, Angoulvant D, Wnendt S, Muhs A, Spitkovsky D, Li R-K (2005) Cell Transplantation Improves Ventricular Function After a Myocardial Infarction : A Preclinical Study of Human Unrestricted Somatic Stem Cells in a Porcine Model. Circulation 112:I96–I104

    Article  PubMed  Google Scholar 

  • Kim JH, Park SH, Park SG, Choi JS, Xia J, Sung JH (2011) The pivotal role of reactive oxygen species generation in the hypoxia-induced stimulation of adipose-derived stem cells. Stem Cells Dev 20:1753–1761

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Kim JH, Song SY, Park SG, Song SU, Xia Y, Sung JH (2012) Primary involvement of NADPH oxidase 4 in hypoxia-induced generation of reactive oxygen species in adipose-derived stem cells. Stem Cell Dev 21:2212–2221

    Article  CAS  Google Scholar 

  • Kubo M, Li TS, Kamota T, Ohshima M, Qin SL, Hamano K (2009) Increased expression of CXCR4 and integrin alphaM in hypoxia-preconditioned cells contributes to improved cell retention and angiogenic potency. J Cell Physiol 220:508–514

    Article  PubMed  CAS  Google Scholar 

  • Landmesser U, Engberding N, Bahlmann FH, Schaefer A, Wiencke A, Heineke A, Spiekermann S, Hilfiker-Kleiner D, Templin C, Kotlarz D, Mueller M, Fuchs M, Hornig B, Haller H, Drexler H (2004) Statin-induced improvement of endothelial progenitor cell mobilization, myocardial neovascularization, left ventricular function, and survival after experimental myocardial infarction requires endothelial nitric oxide synthase. Circulation 110:1933–1939

    Article  PubMed  CAS  Google Scholar 

  • Lavrentieva A, Majore I, Kasper C, Hass R (2010) Effects of hypoxic culture conditions on umbilical cord-derived human mesenchymal stem cells. Cell Commun Signal 8:18

    Article  PubMed  PubMed Central  Google Scholar 

  • Liehn EA, Postea O, Curai A, Marx N (2011) Repair after myocardial infarction, between fantasy and reality. J Am Coll Cardiol 58:2357–2362

    Article  PubMed  Google Scholar 

  • Lin YD, Yeh ML, Yang YJ, Tsai DC, Chu TY, Shih YY, Chang MY, Liu YW, Tang AC, Chen TY, Luo CY, Chang KC, Chen JH, Wu HL, Hung TK, Hsieh PC (2010) Intramyocardial peptide nanofiber injection improves postinfarction ventricular remodeling and efficacy of bone marrow cell therapy in pigs. Circulation 122:S132–S141

    Article  PubMed  CAS  Google Scholar 

  • Lopez AD, Mathers CD, Ezzati M, Jamison DT, Murray CJ (2006) Global and regional burden of disease and risk factors, 2001: systematic analysis of population health data. Lancet 367:1747–1757

    Article  PubMed  Google Scholar 

  • Malek S, Kaplan E, Wang JF, Ke Q, Rana JS, Chen Y, Rahim BG, Li M, Huang Q, Xiao YF, Verheugt FW, Morgan JP, Min JY (2006) Successful implantation of intravenously administered stem cells correlates with severity of inflammation in murine myocarditis. Pflugers Arch 452:268–275

    Article  PubMed  CAS  Google Scholar 

  • Mazo M, Gavira JJ, Pelacho B, Prosper F (2011) Adipose-derived stem cells for myocardial infarction. J Cardiovasc Transl Res 4:145–153

    Article  PubMed  Google Scholar 

  • Menasche P, Alifieri O, Janssens S, McKenna W, Reichenspurner H, Trinquart L, Marolleau JP, Vilquin JT, Seymour B, Larqhero J, Lake S, Chatellier G, Solomon S, Desnos M, Hagege AA (2008) The myoblast autologous grafting in ischemic cardiomyopathy (MAGIC) trial: first randomized placebo-controlled study of myoblast transplantation. Circulation 117:1190–1191

    Article  Google Scholar 

  • Mirotsou M, Jayawardena TM, Schmeckpeper J, Gnecchi M, Dzau VJ (2011) Paracrine mechanisms of stem cell reparative and regenerative actions in the heart. J Mol Cell Cardiol 50:280–289

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Panfilov IA, de Jong R, Takashima S, Duckers HJ (2013) Clinical study using adipose-derived mesenchymal-like stem cells in acute myocardial infarction and heart failure. Methods Mol Biol 1036:207–212

    Article  PubMed  Google Scholar 

  • Pasha Z, Wang Y, Sheikh R, Zhang D, Zhao T, Ashraf M (2008) Preconditioning enhances cell survival and differentiation of stem cells during transplantation in infarcted myocardium. Cardiovasc Res 77:134–142

    Article  PubMed  CAS  Google Scholar 

  • Qu X, Liu T, Song K, Li X, Ge D (2013) Induced Pluripotent Stem Cells Generated from Human Adipose-Derived Stem Cells Using a Non-Viral Polycistronic Plasmid in Feeder-Free Conditions. PLoS ONE 7:e48161

    Article  Google Scholar 

  • Reddy KS (2004) Cardiovascular disease in non-western countries. N Engl J Med 350:2438–2440

    Article  PubMed  CAS  Google Scholar 

  • Rigol M, Solanes N, Farre J, Roura S, Roque M, Berruezo A, Bellera N, Novensa L, Tamborero D, Prat-Vidal C, Huzman MA, Batlle M, Hoefsloot M, Sitges M, Ramirez J, Dantas AP, Merino A, Sanz G, Brugada J, Bayes-Genis A, Heras M (2010) Effects of adipose tissue-derived stem cell therapy after myocardial infarction: impact of the route of administration. J Card Fail 16:357–366

    Article  PubMed  CAS  Google Scholar 

  • Schuh A, Liehn EA, Sasse A, Schneider R, Neuss S, Weber C, Kelm M, Merx MW (2009) Improved left ventricular function after transplantation of microspheres and fibroblasts in a rat model of myocardial infarction. Basic Res Cardiol 104:403–411

    Article  PubMed  Google Scholar 

  • Spallotta F, Rosati J, Straino S, Nanni S, Grasselli A, Ambrosino V, Rotili D, Valente S, Farsetti A, Mai A, Capogrossi MC, Gaetano C, Illi B (2010) Nitric oxide determines mesodermic differentiation of mouse embryonic stem cells by activating class IIa histone deacetylases: potential therapeutic implications in a mouse model of hindlimb ischemia. Stem Cells 28:431–442

    PubMed  CAS  Google Scholar 

  • Stubbs SL, Hsiao ST, Peshavariya HM, Lim SY, Dusting GJ, Dilley RJ (2012) Hypoxic preconditioning enhances survival of human adipose-derived stem cells and conditions endothelial cells in vitro. Stem Cells Dev 21:1887–1896

    Article  PubMed  CAS  Google Scholar 

  • Tang YL, Zhu W, Cheng M, Chen L, Zhang J, Sun T, Kishore R, Phillips MI, Losordo DW, Qin G (2009) Hypoxic preconditioning enhances the benefit of cardiac progenitor celltherapy for treatment of myocardial infarction by inducing CXCR4 expression. Circ Res 104:1209–1216

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Tang JM, Wang JN, Zhang L, Zheng F, Yang JY, Kong X, Guo LY, Chen L, Huang YZ, Wan Y, Chen SY (2011) VEGF/SDF-1 promotes cardiac stem cell mobilization and myocardial repair in the infarcted heart. Cardiovasc Res 91:402–411

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Wang Y, Liu XC, Zhang GW, Zhao J, Zhang JM, Shi RF, Huang YZ, Zhao CH, Liu TJ, Song CX, Lu F, Yang Q, He GW (2009a) A new transmyocardial degradable stent combined with growth factor, heparin, and stem cells in acute myocardial infarction. Cardiovasc Res 84:461–469

    Article  PubMed  CAS  Google Scholar 

  • Wang L, Deng J, Tian W, Xiang B, Yang T, Li G, Wang J, Gruwel M, Kashour T, Rendell J, Glogowski M, Tomanek B, Freed D, Deslauriers R, Arora RC, Tian G (2009b) Adipose-derived stem cells are an effective cell candidate for treatment of heart failure: an MR imaging study of rat hearts. Am J Physiol Heart Circ Physiol 297:H1020–H1031

    Article  PubMed  CAS  Google Scholar 

  • Yamada Y, Yokoyama S, Fukuda N, Kidoya H, Huang XY, Naitoh H, Satoh N, Takakura N (2007) A novel approach for myocardial regeneration with educated cord blood cells cocultured with cells from brown adipose tissue. Biochem Biophys Res Commun 353:182–188

    Article  PubMed  CAS  Google Scholar 

  • Yang D, Wang W, Li L, Peng Y, Chen P, Huang H, Guo Y, Xia X, Wang Y, Wang H, Wang WE, Zeng C (2013) The relative contribution of paracine effect versus direct differentiation on adipose-derived stem cell transplantation mediated cardiac repair. PLoS ONE 8:e59020

    Article  PubMed  CAS  PubMed Central  Google Scholar 

Download references

Acknowledgments

This work was supported by Tianjin Binhai New Area Health Bureau projects (Grants: 2012BWKZ009), the State High-tech Research and Development Plan (Grants: 2011AA020109) and China National Natural Science Foundation (Grants: 81301217). Alliancells Bioscience Co. Ltd. is also gratefully acknowledged for assistance with ADSC.

Conflict of interest

None

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Delin Zhu or Xiaocheng Liu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jiang, Y., Chang, P., Pei, Y. et al. Intramyocardial injection of hypoxia-preconditioned adipose-derived stromal cells treats acute myocardial infarction: an in vivo study in swine. Cell Tissue Res 358, 417–432 (2014). https://doi.org/10.1007/s00441-014-1975-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00441-014-1975-9

Keywords

Navigation