Skip to main content

Advertisement

Log in

Synthesis of porcine pCLCA2 protein during late differentiation of keratinocytes of epidermis and hair follicle inner root sheath

  • Regular Article
  • Published:
Cell and Tissue Research Aims and scope Submit manuscript

Abstract

Despite the discovery of the widely expressed CLCA (chloride channel regulators, calcium-activated) proteins more than 15 years ago, their seemingly diverse functions are still poorly understood. With the recent generation of porcine animal models for cystic fibrosis (CF), members of the porcine CLCA family are becoming of interest as possible modulators of the disease in the pig. Here, we characterize pCLCA2, the porcine ortholog of the human hCLCA2 and the murine mCLCA5, which are the only CLCA members expressed in the skin. Immunohistochemical studies with a specific antibody against pCLCA2 have revealed a highly restricted pCLCA2 protein expression in the skin. The protein is strictly co-localized with filaggrin and trichohyalin in the granular layer of the epidermis and the inner root sheath of the hair follicles, respectively. No differences have been observed between the expression patterns of wild-type pigs and CF transmembrane conductance regulator -/- pigs. We speculate that pCLCA2 plays an as yet undefined role in the structural integrity of the skin or, possibly, in specialized functions of the epidermis, including barrier or defense mechanisms.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

References

  • Abdel-Ghany M, Cheng HC, Elble RC, Pauli BU (2001) The breast cancer beta 4 integrin and endothelial human CLCA2 mediate lung metastasis. J Biol Chem 276:25438–25446

    Article  PubMed  CAS  Google Scholar 

  • Agnel M, Vermat T, Culouscou JM (1999) Identification of three novel members of the calcium-dependent chloride channel (CaCC) family predominantly expressed in the digestive tract and trachea. FEBS Lett 455:295–301

    Article  PubMed  CAS  Google Scholar 

  • Beckley JR, Pauli BU, Elble RC (2004) Re-expression of detachment-inducible chloride channel mCLCA5 suppresses growth of metastatic breast cancer cells. J Biol Chem 279:41634–41641

    Article  PubMed  CAS  Google Scholar 

  • Bernstein ML, McCusker MM, Grant-Kels JM (2008) Cutaneous manifestations of cystic fibrosis. Pediatr Dermatol 25:150–157

    Article  PubMed  Google Scholar 

  • Bothe MK, Braun J, Mundhenk L, Gruber AD (2008) Murine mCLCA6 is an integral apical membrane protein of non-goblet cell enterocytes and co-localizes with the cystic fibrosis transmembrane conductance regulator. J Histochem Cytochem 56:495–509

    Article  PubMed  CAS  Google Scholar 

  • Braun J, Bothe MK, Mundhenk L, Beck CL, Gruber AD (2010) Murine mCLCA5 is expressed in granular layer keratinocytes of stratified epithelia. Histochem Cell Biol 133:285–299

    Article  PubMed  CAS  Google Scholar 

  • Clunes MT, Boucher RC (2011) Introduction to section I: overview of approaches to study cystic fibrosis pathophysiology. Meth Mol Biol 742:3–14

    Article  CAS  Google Scholar 

  • Collin C, Moll R, Kubicka S, Ouhayoun JP, Franke WW (1992) Characterization of human cytokeratin 2, an epidermal cytoskeletal protein synthesized late during differentiation. Exp Cell Res 202:132–141

    Article  PubMed  CAS  Google Scholar 

  • Connon CJ, Yamasaki K, Kawasaki S, Quantock AJ, Koizumi N, Kinoshita S (2004) Calcium-activated chloride channel-2 in human epithelia. J Histochem Cytochem 52:415–418

    Article  PubMed  CAS  Google Scholar 

  • Connon CJ, Kawasaki S, Yamasaki K, Quantock AJ, Kinoshita S (2005) The quantification of hCLCA2 and colocalisation with integrin beta4 in stratified human epithelia. Acta Histochem 106:421–425

    Article  PubMed  CAS  Google Scholar 

  • Connon CJ, Kawasaki S, Liles M, Koizumi N, Yamasaki K, Nakamura T, Quantock AJ, Kinoshita S (2006) Gene expression and immunolocalisation of a calcium-activated chloride channel during the stratification of cultivated and developing corneal epithelium. Cell Tissue Res 323:177–182

    Article  PubMed  CAS  Google Scholar 

  • Doef HP van der, Slieker MG, Staab D, Alizadeh BZ, Seia M, Colombo C, Ent CK van der, Nickel R, Witt H, Houwen RH (2010) Association of the CLCA1 p.S357N variant with meconium ileus in European patients with cystic fibrosis. J Pediatr Gastroenterol Nutr 50:347–349

    Article  PubMed  Google Scholar 

  • Eckert RL, Crish JF, Robinson NA (1997) The epidermal keratinocyte as a model for the study of gene regulation and cell differentiation. Physiol Rev 77:397–424

    PubMed  CAS  Google Scholar 

  • Elble RC, Walia V, Cheng HC, Connon CJ, Mundhenk L, Gruber AD, Pauli BU (2006) The putative chloride channel hCLCA2 has a single C-terminal transmembrane segment. J Biol Chem 281:29448–29454

    Article  PubMed  CAS  Google Scholar 

  • Fietz MJ, McLaughlan CJ, Campbell MT, Rogers GE (1993) Analysis of the sheep trichohyalin gene: potential structural and calcium-binding roles of trichohyalin in the hair follicle. J Cell Biol 121:855–865

    Article  PubMed  CAS  Google Scholar 

  • Gibson A, Lewis AP, Affleck K, Aitken AJ, Meldrum E, Thompson N (2005) hCLCA1 and mCLCA3 are secreted non-integral membrane proteins and therefore are not ion channels. J Biol Chem 280:27205–27212

    Article  PubMed  CAS  Google Scholar 

  • Gruber AD, Elble RC, Ji HL, Schreur KD, Fuller CM, Pauli BU (1998) Genomic cloning, molecular characterization, and functional analysis of human CLCA1, the first human member of the family of Ca2+-activated Cl- channel proteins. Genomics 54:200–214

    Article  PubMed  CAS  Google Scholar 

  • Gruber AD, Schreur KD, Ji HL, Fuller CM, Pauli BU (1999) Molecular cloning and transmembrane structure of hCLCA2 from human lung, trachea, and mammary gland. Am J Physiol 276:C1261–C1270

    PubMed  CAS  Google Scholar 

  • Hamann M, Gibson A, Davies N, Jowett A, Walhin JP, Partington L, Affleck K, Trezise D, Main M (2009) Human ClCa1 modulates anionic conduction of calcium dependent chloride currents. J Physiol (Lond) 587:2255–2274

    Article  CAS  Google Scholar 

  • Hamilton EH, Sealock R, Wallace NR, O'Keefe EJ (1992) Trichohyalin: purification from porcine tongue epithelium and characterization of the native protein. J Invest Dermatol 98:881–889

    Article  PubMed  CAS  Google Scholar 

  • Holmseth S, Zhou Y, Follin-Arbelet VV, Lehre KP, Bergles DE, Danbolt NC (2012) Specificity controls for immunocytochemistry: the antigen preadsorption test can lead to inaccurate assessment of antibody specificity. J Histochem Cytochem 60:174–187

    Article  PubMed  CAS  Google Scholar 

  • Hoshino M, Morita S, Iwashita H, Sagiya Y, Nagi T, Nakanishi A, Ashida Y, Nishimura O, Fujisawa Y, Fujino M (2002) Increased expression of the human Ca2+-activated Cl- channel 1 (CaCC1) gene in the asthmatic airway. Am J Respir Crit Care Med 165:1132–1136

    Article  PubMed  Google Scholar 

  • Irvine AD, McLean WH, Leung DY (2011) Filaggrin mutations associated with skin and allergic diseases. N Engl J Med 365:1315–1327

    Article  PubMed  CAS  Google Scholar 

  • Kanitakis J, Ramirez-Bosca A, Reano A, Viac J, Roche P, Thivolet J (1988) Filaggrin expression in normal and pathological skin. A marker of keratinocyte differentiation. Virchows Arch A Pathol Anat Histopathol 412:375–382

    Article  PubMed  CAS  Google Scholar 

  • Klymiuk N, Mundhenk L, Kraehe K, Wuensch A, Plog S, Emrich D, Langenmayer MC, Stehr M, Holzinger A, Kröner C, Richter A, Kessler B, Kurome M, Eddicks M, Nagashima H, Heinritzi K, Gruber AD, Wolf E (2011) Sequential targeting of CFTR by BAC vectors generates a novel pig model of cystic fibrosis. J Mol Med 90:597–608

    Article  PubMed  Google Scholar 

  • Langbein L, Rogers MA, Praetzel S, Aoki N, Winter H, Schweizer J (2002) A novel epithelial keratin, hK6irs1, is expressed differentially in all layers of the inner root sheath, including specialized Huxley cells (“Flügelzellen”) of the human hair follicle. J Invest Dermatol 118:789–800

    Article  PubMed  CAS  Google Scholar 

  • Langbein L, Rogers MA, Praetzel S, Winter H, Schweizer J (2003) K6irs1, K6irs 2, K6irs 3, and K6irs 4 represent the inner-root-sheath (IRS)-specific type II epithelial keratins of the human hair follicle. J Invest Dermatol 120:512–522

    Article  PubMed  CAS  Google Scholar 

  • Langbein L, Cribier B, Schirmacher P, Praetzel-Wunder S, Peltre B, Schweizer J (2008) New concepts on the histogenesis of eccrine neoplasia from keratin expression in the normal eccrine gland, syringoma and poroma. Br J Dermatol 159:633–645

    Article  PubMed  CAS  Google Scholar 

  • Langbein L, Yoshida H, Parry D, Praetzel-Wunder S, Schweizer J (2010) The keratins of the hair medulla—the riddle of the middle. J Invest Dermatol 130:55–73

    Article  PubMed  CAS  Google Scholar 

  • Lee YJ, Rice RH, Lee YM (2006) Proteome analysis of human hair shaft: from protein identification to posttranslational modification. Mol Cell Proteomics 5:789–800

    Article  PubMed  CAS  Google Scholar 

  • Leverkoehne I, Gruber AD (2002) The murine mCLCA3 (alias gob-5) protein is located in the mucin granule membranes of intestinal, respiratory, and uterine goblet cells. J Histochem Cytochem 50:829–838

    Article  PubMed  CAS  Google Scholar 

  • Loewen ME, Forsyth GW (2005) Structure and function of CLCA proteins. Physiol Rev 85:1061–1092

    Article  PubMed  CAS  Google Scholar 

  • Loewen ME, Bekar LK, Gabriel SE, Walz W, Forsyth GW (2002) pCLCA1 becomes a cAMP-dependent chloride conductance mediator in Caco-2 cells. Biochem Biophys Res Commun 298:531–536

    Article  PubMed  CAS  Google Scholar 

  • Magin TM, Vijayaraj P, Leube RE (2007) Structural and regulatory functions of keratins. Exp Cell Res 313:2021–2032

    Article  PubMed  CAS  Google Scholar 

  • Meyerholz DK, Stoltz DA, Pezzulo AA, Welsh MJ (2010a) Pathology of gastrointestinal organs in a porcine model of cystic fibrosis. Am J Pathol 176:1377–1389

    Article  PubMed  Google Scholar 

  • Meyerholz DK, Stoltz DA, Namati E, Ramachandran S, Pezzulo AA, Smith AR, Rector MV, Suter MJ, Kao S, McLennan G, Tearney GJ, Zabner J, McCray PB Jr, Welsh MJ (2010b) Loss of cystic fibrosis transmembrane conductance regulator function produces abnormalities in tracheal development in neonatal pigs and young children. Am J Respir Crit Care Med 182:1251–1261

    Article  PubMed  Google Scholar 

  • Moll R, Divo M, Langbein L (2008) The human keratins: biology and pathology. Histochem Cell Biol 129:705–733

    Article  PubMed  CAS  Google Scholar 

  • Mundhenk L, Alfalah M, Elble RC, Pauli BU, Naim HY, Gruber AD (2006) Both cleavage products of the mCLCA3 protein are secreted soluble proteins. J Biol Chem 281:30072–30080

    Article  PubMed  CAS  Google Scholar 

  • Mundhenk L, Johannesson B, Anagnostopoulou P, Braun J, Bothe MK, Schultz C, Mall MA, Gruber AD (2012) mCLCA3 does not contribute to the calcium-activated chloride conductance in mouse airways. Am J Respir Cell Mol Biol 47:87–93

    Article  PubMed  CAS  Google Scholar 

  • O'Keefe EJ, Hamilton EH, Lee SC, Steinert P (1993) Trichohyalin: a structural protein of hair, tongue, nail, and epidermis. J Invest Dermatol 101:65S–71S

    Article  PubMed  Google Scholar 

  • Patel AC, Brett TJ, Holtzman MJ (2009) The role of CLCA proteins in inflammatory airway disease. Annu Rev Physiol 71:425–449

    Article  PubMed  CAS  Google Scholar 

  • Plog S, Mundhenk L, Klymiuk N, Gruber AD (2009) Genomic, tissue expression protein characterization of pCLCA1, a putative modulator of cystic fibrosis in the pig. J Histochem Cytochem 57:1169–8

    Article  PubMed  CAS  Google Scholar 

  • Plog S, Mundhenk L, Bothe MK, Klymiuk N, Gruber AD (2010) Tissue and cellular expression of porcine CFTR: similarities to and differences from human CFTR. J Histochem Cytochem 58:785–797

    Article  PubMed  CAS  Google Scholar 

  • Plog S, Groetzsch T, Klymiuk N, Kobalz U, Gruber AD, Mundhenk L (2012) The porcine chloride channel, calcium-activated family member pCLCA4a mirrors lung expression of the human hCLCA4. J Histochem Cytochem 60:45–56

    Article  PubMed  CAS  Google Scholar 

  • Ritzka M, Stanke F, Jansen S, Gruber AD, Pusch L, Woelfl S, Veeze HJ, Halley DJ, Tummler B (2004) The CLCA gene locus as a modulator of the gastrointestinal basic defect in cystic fibrosis. Hum Genet 115:483–491

    Article  PubMed  CAS  Google Scholar 

  • Rogel MR, Jaitovich A, Ridge KM (2010) The role of the ubiquitin proteasome pathway in keratin intermediate filament protein degradation. Proc Am Thorac Soc 7:71–76

    Article  PubMed  Google Scholar 

  • Rogers CS, Abraham WM, Brogden KA, Engelhardt JF, Fisher JT, McCray PB Jr, McLennan G, Meyerholz DK, Namati E, Ostedgaard LS, Prather RS, Sabater JR, Stoltz DA, Zabner J, Welsh MJ (2008a) The porcine lung as a potential model for cystic fibrosis. Am J Physiol Lung Cell Mol Physiol 295:L240–L263

    Article  PubMed  CAS  Google Scholar 

  • Rogers CS, Stoltz DA, Meyerholz DK, Ostedgaard LS, Rokhlina T, Taft PJ, Rogan MP, Pezzulo AA, Karp PH, Itani OA, Kabel AC, Wohlford-Lenane CL, Davis GJ, Hanfland RA, Smith TL, Samuel M, Wax D, Murphy CN, Rieke A, Whitworth K, Uc A, Starner TD, Brogden KA, Shilyansky J, McCray PB Jr, Zabner J, Prather RS, Welsh MJ (2008b) Disruption of the CFTR gene produces a model of cystic fibrosis in newborn pigs. Science 321:1837–1841

    Article  PubMed  CAS  Google Scholar 

  • Rothnagel JA, Rogers GE (1986) Trichohyalin, an intermediate filament-associated protein of the hair follicle. J Cell Biol 102:1419–1429

    Article  PubMed  CAS  Google Scholar 

  • Rozmahel R, Wilschanski M, Matin A, Plyte S, Oliver M, Auerbach W, Moore A, Forstner J, Durie P, Nadeau J, Bear C, Tsui LC (1996) Modulation of disease severity in cystic fibrosis transmembrane conductance regulator deficient mice by a secondary genetic factor. Nat Genet 12:280–287

    Article  PubMed  CAS  Google Scholar 

  • Sandilands A, Sutherland C, Irvine AD, McLean WH (2009) Filaggrin in the frontline: role in skin barrier function and disease. J Cell Sci 122:1285–1294

    Article  PubMed  CAS  Google Scholar 

  • Scholte BJ, Davidson DJ, Wilke M, De Jonge HR (2004) Animal models of cystic fibrosis. J Cyst Fibros 3 (Suppl 2):183–190

    Article  PubMed  CAS  Google Scholar 

  • Snider NT, Weerasinghe SV, Iñiguez-Lluhí JA, Herrmann H, Omary MB (2011) Keratin hypersumoylation alters filament dynamics and is a marker for human liver disease and keratin mutation. J Biol Chem 286:2273–2284

    Article  PubMed  CAS  Google Scholar 

  • Steinert PM, Marekov LN (1995) The proteins elafin, filaggrin, keratin intermediate filaments, loricrin, and small proline-rich proteins 1 and 2 are isodipeptide cross-linked components of the human epidermal cornified cell envelope. J Biol Chem 270:17702–17711

    Article  PubMed  CAS  Google Scholar 

  • Steinert PM, Parry DA, Marekov LN (2003) Trichohyalin mechanically strengthens the hair follicle: multiple cross-bridging roles in the inner root sheath. J Biol Chem 278:41409–41419

    Article  PubMed  CAS  Google Scholar 

  • Stoltz DA, Meyerholz DK, Pezzulo AA, Ramachandran S, Rogan MP, Davis GJ, Hanfland RA, Wohlford-Lenane C, Dohrn CL, Bartlett JA, Nelson GA 4th, Chang EH, Taft PJ, Ludwig PS, Estin M, Hornick EE, Launspach JL, Samuel M, Rokhlina T, Karp PH, Shilyansky J, McCray PB Jr, Zabner J, Welsh MJ (2010) Cystic fibrosis pigs develop lung disease and exhibit defective bacterial eradication at birth. Sci Transl Med 2:29ra31

    Article  PubMed  Google Scholar 

  • Young FD, Newbigging S, Choi C, Keet M, Kent G, Rozmahel RF (2007) Amelioration of cystic fibrosis intestinal mucous disease in mice by restoration of mCLCA3. Gastroenterology 133:1928–1937

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

We are grateful to Jana Enders and Ursula Kobalz for technical support, to Astrid Bethe, Institute of Microbiology and Epizootics, Berlin, for kind help with the confocal laser scanning microscopic analyses, and to Heinz Kutzner, Friedrichshafen for supportive ideas.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Achim D. Gruber.

Additional information

This study was supported by the German Research Foundation (Deutsche Forschungsgemeinschaft MU 3015/1-1), the Mukoviszidose Institut - gemeinnützige Gesellschaft für Forschung und Therapieentwicklung, and in part by the Wilhelm Sander-Stiftung, Munich (2007.133 to L.L.).

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(PDF 302 kb)

ESM 2

(PDF 240 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Plog, S., Mundhenk, L., Langbein, L. et al. Synthesis of porcine pCLCA2 protein during late differentiation of keratinocytes of epidermis and hair follicle inner root sheath. Cell Tissue Res 350, 445–453 (2012). https://doi.org/10.1007/s00441-012-1482-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00441-012-1482-9

Keywords

Navigation