Skip to main content

Advertisement

Log in

The CLCA gene locus as a modulator of the gastrointestinal basic defect in cystic fibrosis

  • Original Investigation
  • Published:
Human Genetics Aims and scope Submit manuscript

Abstract

To determine whether the CLCA gene family of calcium-activated chloride channels is a modulator of the basic defect of cystic fibrosis (CF), an association study was performed with polymorphic microsatellite markers covering a 40-Mbp region spanning the CLCA gene locus on human chromosome 1p in CF patients displaying CF transmembrane conductance regulator (CFTR)-independent residual chloride conductance in gastrointestinal epithelia. Statistically significant association of the electrophysiological phenotype with the allele distribution of markers 5’ of and within the CLCA locus was observed. Transmission disequilibrium and the significance of the association decreased within the locus from hCLCA2 towards hCLCA4. Expression of hCLCA1 and hCLCA4 in human rectal mucosa was proven by microarray analysis. The CLCA gene region was identified to encode mediators of DIDS-sensitive anion conductance in the human gastrointestinal tract that modulate the CF basic defect.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1a,b
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Abdel-Ghany M, Cheng HC, Elble RC, Pauli BU (2001) The breast cancer beta 4 integrin and endothelial human CLCA2 mediate lung metastasis. J Biol Chem 276:25438–25446

    Article  CAS  PubMed  Google Scholar 

  • Abdel-Ghany M, Cheng HC, Elble RC, Pauli BU (2002) Focal adhesion kinase activated by beta(4) integrin ligation to mCLCA1 mediates early metastatic growth. J Biol Chem 277:34391–34400

    Article  CAS  PubMed  Google Scholar 

  • Abdel-Ghany M, Cheng HC, Elble RC, Lin H, DiBiasio J, Pauli BU (2003) The interacting binding domains of the beta 4 integrin and CLCA in metastasis. J Biol Chem 278:49406–49416

    Article  CAS  PubMed  Google Scholar 

  • Agnel M, Vermat T, Culouscou JM (1999) Identification of three novel members of the calcium-dependent chloride conductance (CaCC) family predominantly expressed in the digestive tract and trachea. FEBS Lett 455:295–301

    Article  CAS  PubMed  Google Scholar 

  • Anderson MD, Rich DP, Gregory RJ, Smith AE, Welsh MJ (1991) Generation of cAMP-activated chloride currents by expression of CFTR. Science 251:679–682

    CAS  PubMed  Google Scholar 

  • Anderson MP, Sheppard DN, Berger HA, Welsh MJ (1992) Chloride channels in the apical membrane of normal and cystic fibrosis airway and intestinal epithelia. Am J Physiol 263:L1–L14

    CAS  PubMed  Google Scholar 

  • Bajnath RB, Dekker K, Vaandrager AB, de Jonge HR, Groot JA (1992) Biphasic increase of apical Cl conductance by muscarinic stimulation of HT-29cl19A human carcinoma cell line: evidence for activation of different Cl conductances by carbachol and forskolin. J Membr Biol 127:81–94

    CAS  PubMed  Google Scholar 

  • Bear CE, Li C, Kartner N, Bridges RJ, Jensen TJ, Ramjeesingh M, Riordan JR (1992) Purification and functional reconstitution of the cystic fibrosis transmembrane conductance regulator (CFTR). Cell 68:809–818

    Article  CAS  PubMed  Google Scholar 

  • Beck S, Pohl FM (1984) DNA sequencing with direct blotting electrophoresis. EMBO J 3:2905–2909

    CAS  PubMed  Google Scholar 

  • Boige N, Amiranoff B, Munck A, Laburthe M (1984) Forskolin stimulates adenylate cyclase in human colonic crypts: interaction with VIP. Eur J Pharmacol 101:111–117

    Article  CAS  PubMed  Google Scholar 

  • Bridges RJ, Worrell RT, Frizzell RA, Benos DJ (1989) Stilbene disulfonate blockade of colonic secretory Cl channels in planar lipid bilayers. Am J Physiol 256:C902–C912

    CAS  PubMed  Google Scholar 

  • Broman KW, Murray JC, Sheffield VC, White RL, Weber JL (1998) Comprehensive human genetic maps: individual and sex-specific variation in recombination. Am J Hum Genet 63:861–869

    Article  CAS  PubMed  Google Scholar 

  • Bronsveld I, Mekus F, Bijman J, Ballmann M, Greipel J, Hundrieser J, Halley DJ, Laabs U, Busche R, de Jonge HR et al (2000) Residual chloride secretion in intestinal tissue of ΔF508 homozygous twins and siblings with cystic fibrosis. Gastroenterology 119:32–40

    CAS  PubMed  Google Scholar 

  • Bronsveld I, Mekus F, Bijman J, Ballmann M, de Jonge HR, Laabs U, Halley DJ, Ellemunter H, Mastella G, Thomas S et al (2001) Chloride conductance and genetic background modulate the cystic fibrosis phenotype of ΔF508 homozygous twins and siblings. J Clin Invest 108:1705–1715

    Article  CAS  PubMed  Google Scholar 

  • Bustin SA, Li SR, Dorudi S (2001) Expression of the Ca2+-activated chloride channel genes CLCA1 and CLCA2 is downregulated in human colorectal cancer. DNA Cell Biol 6:331–338

    Article  Google Scholar 

  • Calderaro V, Giovane A, de Simone B, Camussi G, Rossiello R, Quagliuolo L, Servillo L, Taccone W, Giordano C, Balestrieri C (1991) Arachidonic acid metabolites and chloride secretion in rabbit distal colonic mucosa. Am J Physiol 261:G443–G450

    CAS  PubMed  Google Scholar 

  • Canessa CM, Schild L, Buell G, Thorens B, Gautschi I, Horisberger JD, Rossier BC (1994) Amiloride-sensitive epithelial Na+ channel is made of three homologous subunits. Nature 367:463–467

    Article  CAS  PubMed  Google Scholar 

  • Chung WK (1995a) GDB, Human Genome Database Baltimore, September 21st, 1995. Johns Hopkins University 1990–2003. http://www.gdb.org

  • Chung WK (1995b) Conference report: single chromosome workshop chromosome 1, Vienna

  • Clarke LL, Grubb BR, Yankaskas JR, Cotton CU, McKenzie A, Boucher RC (1994) Relationship of a non-cystic fibrosis transmembrane conductance regulator-mediated chloride conductance to organ level disease in cftr(-/-) mice. Proc Natl Acad Sci USA 91:479–483

    CAS  PubMed  Google Scholar 

  • Dharmsathaphorn K, Pandol SJ (1986) Mechanism of chloride secretion induced by carbachol in a colonic epithelial cell line. J Clin Invest 77:348–354

    CAS  PubMed  Google Scholar 

  • Dib C, Faure S, Fizames C, Samson D, Drouot N, Vignal A, Millasseau P, Marc S, Hazan J, Seboun E et al (1996) A comprehensive genetic map of the human genome based on 5,264 microsatellites. Nature 380:152–154

    Article  CAS  PubMed  Google Scholar 

  • DiPalma F, Belyantseva IA, Kim HJ, Vogt TF, Kachar B, Noben-Trauth K (2002) Mutations in Mcoln3 associated with deafness and pigmentation defects in varitint-waddler (Va) mice. Proc Natl Acad Sci USA 99:14994–14999

    Article  CAS  PubMed  Google Scholar 

  • Elble RC, Pauli BU (2001) Tumor suppression by a proapoptotic calcium-activated chloride channel in mammary epithelium. J Biol Chem 276:40510–40517

    Article  CAS  PubMed  Google Scholar 

  • Fuller CM, Benos DJ (2000) Electrophysiological characteristics of the Ca2+-activated Cl-channel family of anion transport proteins. Clin Exp Pharmacol Physiol 27:906–910

    Article  CAS  PubMed  Google Scholar 

  • Fuller CM, Ji HL, Tousson A, Elble RC, Pauli BU, Benos DJ (2001) Ca2+-activated Cl channels: a newly emerging anion transport family. Pflügers Arch Eur J Physiol 443(S1):107–110

    Article  Google Scholar 

  • Gandhi R, Elble RC, Gruber AD, Schreur KD, Ji HL, Fuller CM, Pauli BU (1998) Molecular and functional characterization of a calcium-sensitive chloride channel from mouse lung. J Biol Chem 273:32096–32101

    Article  CAS  PubMed  Google Scholar 

  • Gerken SJ (1994a) GDB, Human Genome Database Baltimore, March 31st, 1994. Johns Hopkins University 1990–2003. http://www.gdb.org

  • Gerken SJ (1994b) GDB, Human Genome Database Baltimore, April 4th, 1994. Johns Hopkins University 1990–2003. http://www.gdb.org

  • Gray MA, Winpenny JP, Porteous DJ, Dorin JR, Argent BE (1994) CFTR and calcium-activated chloride currents in pancreatic duct cells of a transgenic CF mouse. Am J Physiol 266:C213–C221

    CAS  PubMed  Google Scholar 

  • Greenwood IA, Miller LJ, Ohya S, Horowitz B (2002) The large conductance potassium channel beta-subunit can interact with and modulate the functional properties of a calcium-activated chloride channel, CLCA1. J Biol Chem 277:22119–221122

    Article  CAS  PubMed  Google Scholar 

  • Gruber AD, Pauli BU (1999) Tumorigenicity of human breast cancer is associated with loss of Ca2+-activated Cl channel CLCA2. Cancer Res 59:5488–5491

    Google Scholar 

  • Gruber AD, Elble RC, Ji HL, Schreur KD, Fuller CM, Pauli BU (1998a) Genomic cloning, molecular characterization, and functional analysis of human CLCA1, the first human member of the family of Ca2+-activated Cl channel proteins. Genomics 54:200–214

    Article  CAS  PubMed  Google Scholar 

  • Gruber AD, Gandhi R, Pauli BU (1998b) The murine calcium-sensitive chloride channel (mCaCC) is widely expressed in secretory epithelia and in other select tissues. Histochem Cell Biol 110:43–49

    Article  CAS  PubMed  Google Scholar 

  • Gruber AD, Schneur KD, Ji HL, Fuller CM, Pauli BU (1999) Molecular cloning and transmembrane structure of hCLCA2 from human lung, trachea, and mammary gland. Am J Physiol 276:C1261–C1270

    CAS  PubMed  Google Scholar 

  • Gruber AD, Fuller CM, Elble RC, Benos DJ, Pauli BU (2000) The CLCAA gene family: a novel family of putative chloride channels. Curr Genomics 1:201–222

    CAS  Google Scholar 

  • Hardcastle J, Hardcastle PT (1987) The secretory action of histamine in rat small intestine. J Physiol 388:521–532

    CAS  PubMed  Google Scholar 

  • Hey Y (1995) Conference report: single chromosome workshop chromosome 1, Vienna

    Google Scholar 

  • Huang P, Di A, Xie W, Johnson XD (1999) Molecular identification of the CAMKII-activated chloride conductance: candidate by-pass pathway. Pediatr Pulmonol 19S:201

    Google Scholar 

  • Ismailov II, Fuller CM, Berdiev BK, Shlyonsky VG, Benos DJ, Barrett KE (1996) A biologic function for an “orphan” messenger: D-myo-inositol 3,4,5,6-tetrakisphosphate selectively blocks epithelial calcium-activated chloride channels. Proc Natl Acad Sci USA 93:10505–10509

    Article  CAS  PubMed  Google Scholar 

  • Johannsen HK, Nir M, Hoiby N, Koch C, Schwartz M (1991) Severity of cystic fibrosis in patients homzygous and heterozygous for the ΔF508 mutation. Lancet 337:631–634

    Article  PubMed  Google Scholar 

  • Keely SJ, Stack WA, O’Donoghue DP, Baird AW (1995) Regulation of ion transport in human colon. Eur J Pharmacol 279:203–209

    Article  CAS  PubMed  Google Scholar 

  • Kerem E, Corey M, Kerem BS, Rommens J, Markiewicz D, Levison H, Tsui LC, Durie P (1990) The relationship between genotype and phenotype in cystic fibrosis—analysis of the most common mutation (ΔF508). N Engl J Med 323:1517–1522

    CAS  PubMed  Google Scholar 

  • Loewen ME, Bekar LK, Gabriel SE, Walz W, Forsyth GW (2002a) pCLCA1 becomes a cAMP-dependent chloride conductance mediator in Caco-2 cells. Biochem Biophys Res Commun 298:531–536

    Article  CAS  PubMed  Google Scholar 

  • Loewen ME, Gabriel SE, Forsyth GW (2002b) The calcium-dependent chloride conductance mediator pCLCA1. Am J Physiol Cell Physiol 283:C412–C421

    CAS  PubMed  Google Scholar 

  • Loewen ME, Smith NK, Hamilton DL, Grahn BH, Forsyth GW (2003) CLCA protein and chloride transport in canine retinal pigment epithelium. Am J Physiol Cell Physiol 285:C1314–C1321

    CAS  PubMed  Google Scholar 

  • Loewen ME, Bekar LK, Walz W, Forsyth GW, Gabriel SE (2004) pCLCA1 lacks inherent chloride channel activity in an epithelial colon carcinoma cell line. Am J Physiol 287:G33–G41

    Article  CAS  Google Scholar 

  • Lomax RB, Warhurst G, Sandle GI (1996) Characteristics of two basolateral potassium channel populations in human colonic crypts. Gut 38:243–247

    CAS  PubMed  Google Scholar 

  • Mahajan RJ, Baldwin ML, Harig JM, Ramaswamy K, Dudeja PK (1996) Chloride transport in human proximal colonic apical membrane vesicles. Biochim Biophys Acta 1280:12–18

    Article  CAS  PubMed  Google Scholar 

  • Mekus F, Dörk T, Deufel T, Morral N, Tümmler B (1995) Analysis of microsatellites by direct blotting electrophoresis and chemiluminescence detection. Electrophoresis 16:1886–1888

    CAS  PubMed  Google Scholar 

  • Mekus F, Ballmann M, Bronsveld I, Bijman J, Veeze HJ, Tümmler B (2000) Categories of ΔF508 homozygous cystic fibrosis twin and sibling pairs with distinct phenotypic characteristics. Twin Res 3:277–293

    Article  CAS  PubMed  Google Scholar 

  • Murray J (1995) GDB, Human Genome Database Baltimore, August 26th, 1995. Johns Hopkins University 1990–2003. http://www.gdb.org

  • Nagasawa M, Kanzaki M, Iino Y, Morishita Y, Kojima I (2001) Identification of a novel chloride channel expressed in the endoplasmic reticulum, Golgi apparatus, and nucleus. J Biol Chem 276:20413–20418

    Article  CAS  PubMed  Google Scholar 

  • Qu Z, Wei RW, Mann W, Hartzell HC (2003) Two bestrophins cloned from Xenopus laevis oocytes express Ca2+-activated Cl currents. J Biol Chem 278:49563–49572

    Article  CAS  PubMed  Google Scholar 

  • Reddy MM, Quinton PM (2002) Effect of anion transport blockers on CFTR in the human sweat duct. J Membr Biol 189:15–25

    Article  CAS  PubMed  Google Scholar 

  • Ritzka M, Weinel C, Stanke F, Tümmler B (2004) Sequence comparison of the whole murine and human CLCA locus reveals conserved synteny between both species. Genome Lett 2:149–154

    Article  Google Scholar 

  • Rozen S, Skaletsky HJ (2000) In: Krawetz S, Misener S (eds) Bioinformatics methods and protocols: methods in molecular biology. Humana Press, Totowa, pp 365–386 (Code available at http://www-genome.wi.mit.edu/genome_software/other/primer3.html) http://www-genome.wi.mit.edu/cgi-bin/primer/primer3_www.cgi

  • Rozmahel R, Wilschanski M, Plyte S, Oliver M, Auerbach W, Moore A, Forstner J, Durie P, Nadeau JH, Bear CE, Tsui LC (1996) Modulation of disease severity in cystic fibrosis transmembrane conductance regulator deficient mice by a secondary genetic factor. Nat Genet 12:280–287

    Article  CAS  PubMed  Google Scholar 

  • Santis G, Osborne L, Knight RA, Hodson ME (1990) Independent genetic determinants of pancreatic and pulmonary status in cystic fibrosis. Lancet 336:1081–1084

    Article  CAS  PubMed  Google Scholar 

  • Schwiebert EM, Flotte T, Cutting GR, Guggino WB (1994) Both CFTR and outwardly rectifying chloride channels contribute to cAMP-stimulated whole cell chloride currents. Am J Physiol 266:C1464–C1477

    CAS  PubMed  Google Scholar 

  • Sham PC, Curtis D (1995) Monte Carlo tests for associations between disease and alleles at highly polymorphic loci. Ann Hum Genet 59:97–105

    PubMed  Google Scholar 

  • Stohr H, Marquardt A, Nanda I, Schmid M, Weber BH (2002) Three novel human VMD2-like genes are members of the evolutionary highly conserved RFP-TM family. Eur J Hum Genet 10:281–284

    Article  PubMed  Google Scholar 

  • Sun H, Tsunenari T, Yau K, Nathans J (2002) The vitelliform macular dystrophy protein defines a new family of chloride channels. Proc Natl Acad Sci USA 99: 4008–4013

    Article  CAS  PubMed  Google Scholar 

  • Thevenod F (2002) Ion channels in secretory granules of the pancreas and their role in exocytosis and release of secretory proteins. Am J Physiol Cell Physiol 283:C651–C672

    CAS  PubMed  Google Scholar 

  • Thevenod F, Roussa E, Benos DJ, Fuller CM (2003) Relationship between a HCO3-permeable conductance and a CLCA protein from rat pancreatic zymogen granules. Biochem Biophys Res Commun 300:546–554

    Article  CAS  PubMed  Google Scholar 

  • Vajanaphanich M, Schultz C, Rudolf MT, Wassermann M, Enyedi P, Craxton A, Shears SB, Tsien RY, Barrett KE, Traynor-Kaplan A (1994) Long-term uncoupling of chloride secretion from intracellular calcium levels by Ins(3,4,5,6)P4. Nature 371:711–714

    Article  CAS  PubMed  Google Scholar 

  • Weissenbach J (1995) GDB, Human Genome Database Baltimore, July 21st, 1995. Johns Hopkins University 1990–2003. http://www.gdb.org

  • Zhu DZ, Cheng CF, Pauli BU (1991) Mediation of lung metastasis of murine melanomas by a lung-specific endothelial cell adhesion molecule. Proc Natl Acad Sci USA 88:9568–9572

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank Ulrike Laabs and Radha Soedhof for excellent technical assistance, and Drs. Inez Bronsveld and Andrea van Barneveld for helpful discussions. Financial support by the Deutsche Forschungsgemeinschaft to A.D.G. and B.T. (SFB 621) and the European Union to B.T. (QL G1-CF-2001-01005) is gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Burkhard Tümmler.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ritzka, M., Stanke, F., Jansen, S. et al. The CLCA gene locus as a modulator of the gastrointestinal basic defect in cystic fibrosis. Hum Genet 115, 483–491 (2004). https://doi.org/10.1007/s00439-004-1190-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00439-004-1190-y

Keywords

Navigation