Skip to main content

Advertisement

Log in

A new characterization of quadratic transportation-information inequalities

  • Published:
Probability Theory and Related Fields Aims and scope Submit manuscript

Abstract

It is known that a quadratic transportation-information inequality \(\mathrm{W}_2\mathrm{I}\) interpolates between the Talagrand’s inequality \(\mathrm{W}_2\mathrm{H}\) and the log-Sobolev inequality (LSI for short). The aim of this paper is threefold: (1) To prove the equivalence of \({\mathrm {W}}_2\mathrm{I}\) and the Lyapunov condition, which gives a new characterization inspired by Cattiaux et al. (Probab Theory Relat Fields 148(1–2):285–304, 2010). (2) To prove the stability of \({\mathrm {W}}_2\mathrm{I}\) under bounded perturbations, which gives a transference principle in the sense of Holley–Stroock. (3) To prove \(\mathrm{W}_2\mathrm{H}\) through a restricted \(\mathrm{W}_2\mathrm{I}\), which gives a counterpart of the restricted LSI presented by Gozlan et al. (Ann Probab 39(3):857–880, 2011).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Bakry, D., Barthe, F., Cattiaux, P., Guillin, A.: A simple proof of the Poincaré inequality for a large class of probability measures including the log-concave case. Electron. Commun. Probab. 13, 60–66 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  2. Bakry, D., Cattiaux, P., Guillin, A.: Rates of convergence for ergodic continuous Markov processes: Lyapunov versus Poincaré. J. Funct. Anal. 254(3), 727–759 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  3. Bakry, D., Gentil, I., Ledoux, M.: Analysis and Geometry of Markov Diffusion Operators. Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], vol. 348. Springer, Cham (2014)

  4. Barthe, F., Cattiaux, P., Roberto, C.: Interpolated inequalities between exponential and Gaussian, Orlicz hypercontractivity and application to isoperimetry. Rev. Math. Iberoam. 22(3), 993–1067 (2006)

    Article  MATH  Google Scholar 

  5. Bobkov, S.G., Götze, F.: Exponential integrability and transportation cost related to logarithmic Sobolev inequalities. J. Funct. Anal. 163, 1–28 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  6. Cattiaux, P., Guillin, A.: Functional inequalities via Lyapunov conditions. In: Ollivier, Y., Pajot, H., Villani, C. (eds.) Optimal Transportation, Theory and Applications. London Mathematical Society Lecture Notes Series, vol. 413, pp. 274–287. Cambridge University Press, Cambridge (2014)

    Chapter  Google Scholar 

  7. Cattiaux, P., Guillin, A., Wang, F.-Y., Wu, L.-M.: Lyapunov conditions for super Poincaré inequalities. J. Funct. Anal. 256(6), 1821–1841 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  8. Cattiaux, P., Guillin, A., Wu, L.-M.: A note on Talagrands transportation inequality and logarithmic Sobolev inequality. Probab. Theory Relat. Fields 148(1–2), 285–304 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  9. Cattiaux, P., Guillin, A., Zitt, P.-A.: Poincaré inequalities and hitting times. Ann. Inst. Henri Poincare Probab. Stat. 49(1), 95–118 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  10. Djellout, H., Guillin, A., Wu, L.-M.: Transportation cost-information inequalities and applications to random dynamical systems and diffusions. Ann. Probab. 32(3B), 2702–2732 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  11. Evans, L.C.: Partial Differential Equations, 2nd edn. Graduate Studies in Mathematics, vol. 19. American Mathematical Society, Providence (2010)

  12. Gilbarg, D., Trudinger, N.: Elliptic Partial Differential Equations of Second Order, 2nd edn. Grundlehren der Mathematischen Wissenschaften, vol. 224. Springer, Berlin (1983)

  13. Gozlan, N., Léonard, C.: A large deviation approach to some transportation cost inequalities. Probab. Theory Relat. Fields 139(1–2), 235–283 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  14. Gozlan, N., Léonard, C.: Transport inequalities, a survey. Markov Process. Relat. Fields 16, 635–736 (2010)

    MathSciNet  MATH  Google Scholar 

  15. Gozlan, N., Roberto, C., Samson, P.M.: A new characterization of Talagrands transport-entropy inequalities and applications. Ann. Probab. 39(3), 857–880 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  16. Gozlan, N., Roberto, C., Samson, P.M.: Hamilton Jacobi equations on metric spaces and transport entropy inequalities. (English summary). Rev. Mat. Iberoam. 30(1), 133–163 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  17. Guillin, A., Léonard, C., Wang, F.-Y., Wu, L.-M.: Transportation information inequalities for Markov processes (II). arXiv:0902.2101

  18. Guillin, A., Léonard, C., Wu, L.-M., Yao, N.: Transportation information inequalities for Markov processes. Probab. Theory Relat. Fields 144(3–4), 669–696 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  19. Holley, R., Stroock, D.: Logarithmic Sobolev inequalities and stochastic Ising models. J. Stat. Phys. 46(5–6), 1159–1194 (1987)

    Article  MathSciNet  MATH  Google Scholar 

  20. Liu, Y.: Gaussian integrability of distance function under the Lyapunov condition. Electron. Commun. Probab. 20(9), 1–10 (2015)

    Article  MathSciNet  Google Scholar 

  21. Liu, Y.: A link between the log-Sobolev inequality and Lyapunov condition. Potential Anal. 44(4), 629–637 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  22. Lott, J., Villani, C.: Hamilton-Jacobi semigroup on length spaces and applications. J. Math. Pures Appl. (9) 88(3), 219-229 (2007)

  23. Otto, F., Villani, C.: Generalization of an inequality by Talagrand and links with the logarithmic Sobolev inequality. J. Funct. Anal. 173(2), 361–400 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  24. Talagrand, M.: Transportation cost for gaussian and other product measures. Geom. Funct. Anal. 6, 587–600 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  25. Villani, C.: Topics in Optimal Transportation. Graduate Studies in Mathematics, vol. 58. American Mathematical Society, Providence (2003)

  26. Villani, C.: Optimal Transport: Old and New. Grundlehren der Mathematischen Wissenschaf-ten, vol. 338. Springer, Berlin (2009)

Download references

Acknowledgments

It is my great pleasure to thank Prof. Li-Ming Wu for his warm encouragement. And I deeply appreciate the anonymous reviewer for his/her conscientious reading and many suggestions on the first version. This work is supported by NSFC (No. 11201456, No. 1143000182, No. 11371352), AMSS research grant (No. Y129161ZZ1), and Key Laboratory of Random Complex Structures and Data, Academy of Mathematics and Systems Science, Chinese Academy of Sciences (No. 2008DP173182).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yuan Liu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, Y. A new characterization of quadratic transportation-information inequalities. Probab. Theory Relat. Fields 168, 675–689 (2017). https://doi.org/10.1007/s00440-016-0721-5

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00440-016-0721-5

Keywords

Mathematics Subject Classification

Navigation